Читать книгу Математика любви. Закономерности, доказательства и поиск идеального решения - Ханна Фрай - Страница 9

Джентльмены предпочитают блондинок

Оглавление

Те, кто смотрел фильм “Игры разума” (A Beautiful Mind, 2001), могут считать, что математика уже ответила на этот вопрос. Фильм описывает жизнь математического гения Джона Нэша, и в нем в беллетризованной форме описываются некоторые из главных математических озарений ученого. В одной из самых знаменитых сцен фильма Нэш и трое его обаятельных приятелей встречают в баре компанию из пяти девушек: четырех брюнеток и одной блондинки (она самая симпатичная из всех).

Все парни тут же обращают внимание на блондинку. Они готовы все вместе начать ухаживать за ней, однако Нэш предлагает другую тактику. Будет лучше для всех, говорит он, если они проигнорируют блондинку, а начнут заигрывать с четырьмя ее темноволосыми подругами:

Если мы все начнем клеиться к блондинке, то “заблокируем” друг друга, и она не достанется никому. Тогда мы начнем заигрывать с ее подругами, но нас ждет холодный прием, потому что кому же хочется быть запасным вариантом. Но что, если никто из нас не станет ухаживать за блондинкой? Мы не будем мешать друг другу и не обидим остальных девушек. Это единственный способ победить.

Тут я на минуту остановлюсь, чтобы обратить ваше внимание на невысказанные допущения:

1. Блондинка готова ответить на ухаживания любого, кто к ней подойдет, при условии, что это будет один человек.

2. Женщины вообще не имеют права голоса в вопросе выбора кавалера.

3. Выбирая между возможностью провести вечер с кем-то, кто не очень нравится, или перспективой вообще остаться ни с чем, все выбирают первое.


Если отбросить блистательное изображение “равенства полов” образца 1950 года, этот пример иллюстрирует интересную, хотя и достаточно парадоксальную точку зрения: не всегда оптимальная стратегия заключается в том, чтобы выбирать именно того партнера, который нравится вам больше всего. В фильме, по крайней мере, вечер заканчивается ко всеобщему удовольствию именно потому, что участники игнорируют свои личные предпочтения.

Этот эпизод служит иллюстрацией математической теории, которая называется теорией игр – она позволяет формализовать стратегии и найти наилучшую тактику в той или иной ситуации.

Несмотря на свое название, теория игр занимается не только развлечениями. Ее можно применить в любой ситуации, где соревнуются двое или больше конкурентов. В данном случае друзья боролись за девушку, но вообще-то теорию игр с успехом используют где угодно, от эволюционной биологии (животные с различными особенностями внутри одного вида конкурируют за пищу и другие ресурсы) до экономики и политики (правительства уравновешивают шансы конкурирующих сторон, чтобы влиять на социальное поведение граждан).

В примере из фильма “Игры разума” единственная стратегия, при которой все мужчины могут остаться в выигрыше, действительно состоит в том, чтобы игнорировать блондинку. Тем не менее в плане главного героя фильма есть уязвимое место: каждый из парней может легко обмануть своих приятелей, пообещав следовать плану, но в последний момент переметнуться от брюнетки к блондинке и выиграть, таким образом, главный трофей. При этом каждому из оставшихся парней все равно достанется одна из девушек, однако в целом этот сценарий не подходит для тех, кто ценит своих друзей и боится их потерять.

Но стоит ли сразу же коварно ставить подножку друзьям – а что, если допущения Нэша ошибочны? Вдруг блондинка окажет явное предпочтение самому красивому парню и не проявит никакого интереса к остальным? Что ж, тогда дальнейшая тактика каждого очевидна: красавчик остается с блондинкой, оставшиеся трое выбирают себе в пару одну из брюнеток. И даже если кто-то из троих в последнюю минуту вдруг все-таки решит попытать счастья с блондинкой, его попытка будет отвергнута (и заодно понизит его шансы добиться благосклонности брюнетки).

В результате каждый из парней будет действовать, исходя из собственных интересов (это называется “равновесием Нэша”), но в то же время эти действия оказываются максимально выгодными для всей группы парней в целом (а это уже “равновесие Парето”).

К сожалению, в реальной жизни редко возникают такие прямолинейные ситуации: четыре одинаковых брюнетки без комплексов и одна сногсшибательная блондинка, от которой все без ума. В реальной жизни у членов реальной группы, скорее всего, будут разные предпочтения, и обычно бывает трудно убедить их принести эти предпочтения в жертву общему благу.


Конец ознакомительного фрагмента. Купить книгу
Математика любви. Закономерности, доказательства и поиск идеального решения

Подняться наверх