Читать книгу Hello World. Как быть человеком в эпоху машин - Ханна Фрай - Страница 10

Власть
Борьба за власть

Оглавление

Этот спор начался не сегодня и не вчера. В 1954 году профессор клинической психологии Миннесотского университета Пол Мил опубликовал работу под названием “Клинический и статистический прогнозы” и, решительно заняв крайнюю позицию, взбудоражил целое поколение людей.

В этой книге Мил провел систематическое сравнение деятельности людей и машин на примерах прогнозирования всего на свете, от успеваемости учеников до психического состояния пациентов, и пришел к выводу, что математические модели, независимо от уровня их сложности, почти наверняка дадут более точный ответ, чем люди.

С тех пор, в течение полувека, открытия Мила подтвердились множеством других исследований. Если от вас требуется рассчитать неважно что – медицинский прогноз или возможные объемы продаж, количество попыток самоубийств или степень удовлетворенности карьерным ростом – или дать оценку чему угодно, от годности к военной службе до перспектив выполнения учебного плана, смело ставьте на алгоритм[46][47]. Машина тоже немного промахнется, но если позволить человеку отвергать ее решения, ошибки будут еще более грубыми.[48]

Наверное, в этом нет ничего удивительного. Мы не созданы для вычислений. Мы не предполагаем, что в супермаркете отряд кассиров примется разглядывать наши покупки, пытаясь определить их стоимость. Мы позволяем простейшей программе сосчитать все за нас. И в большинстве случаев мы только выиграем, если предоставим это машине. Как шутят летчики, лучший экипаж состоит из троих членов – пилота, компьютера и собаки. Компьютер управляет самолетом, пилот кормит собаку, а собака кусает пилота, если тот попробует прикоснуться к компьютеру.

Но отношения с машинами у нас немного странные. Мы доверчивы как дети, если ничего не понимаем, и в то же время у нас есть отвратительная привычка вмешиваться в работу машины и даже полностью игнорировать ее и полагаться на собственные неверные суждения, если нам известно, что она может ошибиться. Специалисты называют это неприятием алгоритмов. К ошибкам машин люди относятся менее снисходительно, чем к своим, даже если их собственные ошибки гораздо страшнее.

Это явление не раз воспроизводилось в разных экспериментах[49], да вы и сами заметите у себя такое же свойство. Когда приложение в телефоне утверждает, что дорога займет больше времени, чем мне кажется, я уверена, что знаю лучше – хотя, скорее всего, рискую опоздать. Все мы хоть раз да обозвали своего голосового помощника идиотом, почему-то забывая в этот момент, что устройство, которое мы держим в руке, создано благодаря фантастическому развитию современных технологий. И поначалу, маясь в пробках под руководством пока еще нового для меня навигационного приложения Waze, я не раз убеждала сама себя, что окольный путь был бы короче указанного маршрута – и почти всегда была неправа. Сейчас я пришла к выводу, что навигатору надо верить и, подобно Роберту Джонсу с его BMW, послушно поворачиваю, куда велит GPS, – но, думаю, я бы все-таки пресекла попытку загнать меня на край обрыва.

Категоричность в эпоху высоких технологий (либо алгоритмы всемогущи, либо абсолютно бесполезны) может привести к нежелательным последствиям. Если мы хотим использовать технику с наибольшей отдачей, нам придется выработать привычку к объективности. Мы должны учесть ошибку Гарри Каспарова и признать свои слабости, научиться контролировать свои спонтанные реакции и более осознанно относиться к программам, с которыми мы имеем дело. С другой стороны, нельзя смотреть на программы снизу вверх, надо анализировать их чуть более придирчиво и задумываться о том, справятся ли они с поставленной задачей. Только так можно понять, заслуживают ли они той власти, которую им дали.

К сожалению, все это легче сказать, чем сделать. Зачастую мы почти не в силах повлиять на могущество и радиус действия даже тех алгоритмов, которые непосредственно затрагивают нашу жизнь.

Особенно это касается тех программ, что оперируют самым главным в наше время товаром – данными. Повсюду в интернете нас преследуют безмолвные алгоритмы – они собирают информацию о нас, вторгаются в наше личное пространство, составляют на нас характеристики, – и ничто не мешает им незаметно влиять на наше поведение. Последствия гремучей смеси из неправомочно присвоенной власти, влияния и необоснованного доверия могут коренным образом изменить все наше общество.

46

Paul E. Meehl, Clinical versus Statistical Prediction: A Theoretical Analysis and a Review of the Evidence (Minneapolis: University of Minnesota, 1996; first publ. 1954), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.6031&rep=rep1&type=pdf.

47

William M. Grove, David H. Zald, Boyd S. Lebow, Beth E. Snitz and Chad Nelson, Clinical versus mechanical prediction: a meta-analysis, Psychological Assessment, vol. 12, no. 1, 2000, p. 19.

48

Любопытный факт: в конце 1950-х и в 1960-х годах цикл исследований в области “диагностики” (словечко не мое – так выразились авторы) гомосексуальности послужил иллюстрацией к редкому исключению из правила превосходства алгоритмов. В данном случае люди дали гораздо более точные оценки и обошли машину по всем показателям – по-видимому, то, что касается сугубо человеческой природы, невозможно адекватно описать с помощью цифр и математического аппарата.

49

Berkeley J. Dietvorst, Joseph P. Simmons and Cade Massey, Algorithmic aversion: people erroneously avoid algorithms after seeing them err, Journal of Experimental Psychology, Sept. 2014, http://opim.wharton.upenn.edu/risk/library/WPAF201410-AlgorithmAversion-Dietvorst-Simmons-Massey.pdf.

Hello World. Как быть человеком в эпоху машин

Подняться наверх