Читать книгу Time Telling through the Ages - Harry Chase Brearley - Страница 8

CHAPTER THREE
How Man Began to Model After Nature

Оглавление

Table of Contents

We now have reached a point far ahead of our story and must take a backward step. We have been seeing man as a mere observer of nature; but man doesn't stop with nature as he finds it—his man-brain drives him forward; he must make improvements of his own. Animals may live and die and leave no trace save their bones, which for the most part soon disappear, but man always leaves traces behind him. He has always interfered with nature, or rather has modeled after nature, seeing in her work the revelations of principles and laws that he might utilize in varying ways for his own benefit and progress. Our material civilization is built up from the accumulated results of all this study and control of nature by hundreds of millions of busy brains and hands, through tens of thousands of years.

Here we are, then, living, in a sense on the top of the ages of human history, like the dwellers on a coral island. Hundreds of generations have toiled to raise the vast structure for us, like the little coral "polyps" which build their own lives into the mass, yet we take it all as a matter of course and rarely give a thought to the marvelous ways by which it has come about. You may have just glanced at your watch. To you, perhaps, a watch has always seemed merely a small mechanism which was bought in a store. That is true, and yet—remember this—the first manufacturer who had a hand in producing that watch for you, may have been a caveman.

In order to appreciate this development, let us return, therefore, for another rapid view of prehistoric times; life in its crudest form—one day much like another—a scanty population, huddled in little groups in places naturally sheltered—the simplest physical needs to be provided for—little thought of the past or care for the future—time-reckoning reduced to the single thought of appointment—no reason for measuring intervals—in these and other respects antiquity presented the greatest possible contrast to our complicated modern life.

The long-armed man of our first chapter noticed that as the sun moved, the shadows of the cliff also moved, as did all other shadows. As he formed habits of regularity, it was natural for him to perform a certain daily act when, perhaps, the shadow of a certain tree touched upon a certain stone. This would be a natural sun-dial.

But a thinner, sharper shadow would be easier to observe; suppose, therefore, that some successor to the long-armed man set up a pole in some open space and laid a stone to mark the spot where the shadow fell when the sun was highest in the heavens. That would be an artificial sun-dial—a device deliberately planned to accomplish a certain purpose. The man who first took such a step was probably the first manufacturer who had a hand in supplying you with your watch. The shaggy mammoth, the terrible saber-tooth tiger and the eohippus, the small ancestor of our modern horse, must have been familiar sights when time-recording at the hands of some rude, unconscious inventor thus began the long story of its development.

One stone reached by the moving shadow would mark only one point of time each day. Why not place two stones, three stones, or even more and get more markings? Such a procedure would be more useful because it would indicate the time of other happenings in the course of the day. The sun would pass across the skies and the shadow must travel around the pole. What more natural than to place the stones in a circle and get a series of these markings?

Of course, as the ages passed, life became more complex—not complex as we would consider it to-day, but, as compared with its rude beginnings. New habits were formed, new needs developed, new activities were undertaken at different periods.

Here, then, was the sprouting of modern civilization—the beginning of that specializing of each man in his own particular direction that has carried the world to its present high state of expertness in so many fields. Slowly steadily, and inevitably this principle of specialization has been developed. With the increase of laws, for example, certain men came to give them special study and then to sell their knowledge and skill to other men who had no opportunity for such study. In course of time, the aggregation of laws became so great that these lawyers were forced to specialize among themselves; to-day, therefore, we find a number of classes of law specialists. The same thing is true of doctors who have limited their practise until we find those who treat the eye only, or the lungs, the stomach, or the teeth. Even the treatment of the teeth has been subdivided, some dentists limiting themselves to extraction and some of them even to the treatment of a single disease of the gums.

Engineering, too, has branched like a tree and the branches have branched again and yet again. Electrical engineering has come to be divided into so many departments that telephone companies employ specialists in many branches of the engineering profession.

We find the same conditions in any field of thought or activity—all commercial and industrial life is divided and subdivided; labor is specialized; writing is specialized; teaching is specialized; even warfare has become a contest between many kinds of trained specialists, each employing the tools of his trade; and every man's outlook upon life is directed chiefly toward the particular corner of the particular field that he has fitted himself to occupy.

The first step toward this complex condition of the modern world was taken when each man stopped getting his own food, making his own weapons, and providing for all his individual wants without dependence upon others. When he learned to exchange that which he could best produce for that which some other man had learned to make better than he, the human race unconsciously turned away from the status of the birds and the beasts and began the long, slow upward climb that history records.

It was, then, through trade, barter and exchange that man began to acquire the manners of civilized life. Trade itself became a specialized activity, and dealers who did nothing but buy and sell, but themselves produced no material goods, found that a special calling was rightfully theirs. The modern merchant is the heir of one of the first "specialists" in human activity, and the misunderstood work of the so-called "middleman" is one of the bases of modern civilization—a necessary and honorable calling.

The First Recorded Sun Dial

The "Dial of Ahaz" was probably a flight of curving steps upon which a beam of sunlight fell. See Isaiah, xxxviii.

Civilization is a thing of the spirit, but it has the support of material things and it has been truly said that the degree of a people's civilization can be measured by the multiplicity of its needs. The savage is content with food, shelter and a covering for his body, but every step in civilization's progress has a more and more complex material accompaniment, and these interwoven relationships of modern life in which the question of time is a most important factor can only be sustained through the use of accurate time-measure. In other words, modern civilization leans upon the watch.

But here again we have run somewhat ahead of our story which, as a matter of fact, had only reached the point of primitive sun-dials. But this anticipation will be excused because of the importance of emphasizing that the growing interdependence of human relations had made it necessary to take into account the convenience of a greater and greater number of people, and this involved closer and closer time-recording in smaller divisions of time by more exact methods.

The sun-dial underwent so many changes that a volume would be needed to describe them all. For example, it was found that the shadow of an upright stick or stone varied from day to day, because, as we have already noticed, the sun rises farther north in summer in the northern hemisphere than it does in winter. So the mark for a certain hour would change as the season changed, and the dial would not indicate time accurately.

Berosus, a Chaldean historian and priest of Bel, or Baal, a god of the old Babylonian, lived about the year 250 B. C., and hit upon a very ingenious way of solving this difficulty. He made the dial hollow like the inside of a bowl. Into this the shadow was cast by a little round ball or bead at the end of a pointer that stood horizontally out over the bowl.

Now the sky itself is like a great bowl or inverted hemisphere, and, howsoever the sun moved upon it, the shadow would move in the same way upon the inside of the bowl or hemisphere. And by drawing lines in the bowl, similar to the lines of longitude upon the map, the hours could be correctly measured. The "Hemicycle of Berosus," as it was called, remained in use for centuries and was the favorite form of sun-dial all through the classic period of Greece and Rome. Cicero had one at his villa near Tusculum, and one was found, in 1762, at Pompeii.

But the hemicycle was not easy to make unless it were fairly small, and, if small, it was not very easy to read. You can see that a shadow which traveled only a few inches in a whole day would move so slowly that one could hardly see it go. And the shadow of a round ball is not a clear sharp-pointed thing like the hand of a watch, whose exact position can be seen however small it may be. Besides, the ancients were not very particular about exact timekeeping. They had no trains to catch, and in their leisurely lives convenience counted for more than doing things "on the minute." So they still continued using the upright pointer which the Greeks called the gnomon, meaning "the one who knows."

"Cleopatra's Needle," and other Egyptian obelisks may also have been used as huge gnomons to cast their shadows upon mammoth dials, for they were dedicated to the sun. With an object of such great size the shadow would move rapidly enough to be followed easily by the eye. But of course its motion would be irregular because of the flat surface of the dial. The word "dial," by the way, comes from the Latin dies meaning "day," because it determined the divisions of the day.

Then there was applied the idea of making the shadow move over a hollow space, such as a walled courtyard, going down one side, across, and up the other side as the sun went up, across and down the sky. Sometimes light was used instead of shadow, the place being partially roofed over and a single beam of light being admitted through a small hole at the southern end. Men kept track of the motion of this beam as it touched one point after another during the day.

Do you remember the miracle of the dial of Ahaz, mentioned in the Bible? Hezekiah the king was sick and despondent, and would not believe that he could ever recover from his illness or prevail against his enemies. So the prophet, Isaiah, in an effort to comfort the royal sufferer, made the shadow return backward ten degrees upon the dial of Ahaz, as a sign from heaven that his prophecy of the king's future recovery was true. You will find the story in Isaiah, Chapter thirty-eight.

This dial of Ahaz was probably a curved flight of steps rising like the side of a huge bowl at one end of the palace courtyard, with either a shadow cast by a pointer overhead or a beam of light admitted through an opening. It can be seen that this and similar great dials were applications of the hemicycle idea on a large scale.

According to our chronology, the dial of Ahaz must have been built during the eighth century, B. C. Although the sun-dial period was, of course, many hundreds of years older than this, yet the story of this Hebrew king and prophet is the first authentic reference to a sun-dial which has been discovered.

However, the final improvement of the dial was made when it was discovered that by slanting the pointer, or gnomon, exactly toward the north pole of the sky—the point where the north star appears at night—the sun's shadow could be cast upon a flat surface with accurate results in indicating time.

This may sound simple, but if you will look at a sun-dial such as may still be found in gardens, you will see that the lines of the hours and minutes are laid out on certain carefully calculated angles; you will realize that people had to acquire considerable knowledge before they were capable of making such calculations. The whole subject of dial-making is so complicated that, in 1612, there was published a big book of eight hundred pages on the subject.

The angles of the lines of the sun-dial must be different for different latitudes. It took that strong-arm race of ancient times, the Romans, a hundred years to learn this fact. The Romans, at this time, were developing their civilization from the shoulders downward, while the Greeks and some of the Greek colonies developed theirs from the shoulders upward. Rome was a burly power, with powerful military muscles. Whatever it wanted it went out and took at the point of the sword, as some nations have endeavored to do in latter days. Thus, the city of Rome became a vast storehouse of miscellaneous loot—the fruit of other men's brains and hands.

Some conqueror of that day took back with him a sun-dial from the Greek colony of Sicily. This was set up in Rome, where nobody realized that even the power of Rome's armies was not able to transplant the angle of the sun as it shone upon Sicily far to the southward. It was nearly one hundred years before these self-satisfied robbers found that they had been getting the wrong time-record from the stolen instrument. Thus, the original owners had a form of belated revenge, could they but have known it.

One of the largest of all the sun-dials was the one set up by the Roman Emperor Augustus when he returned from his Egyptian wars bringing with him an obelisk not unlike the one which now stands near the Metropolitan Museum of Art in Central Park, New York City. If you can imagine this Egyptian obelisk, with its strange hieroglyphic characters upon its four sides, surrounded by a great dial with the figures of the hours marked upon its surface, you will get an idea of the size of this huge timepiece. However, it was probably more picturesque than valuable as a time-keeper.

There is an important difference between clocks and sun-dials, aside from the self-evident one of the difference in their construction. Clock-time is based on what is called "mean time." If we study the almanac table of times of sunrises and sunsets, and count the number of hours from sunrise of one day to sunrise of the next, we find it is rarely exactly twenty-four hours, but usually a few minutes more or less, while the average for the whole year is twenty-four hours. The clock is constructed to keep uniform time based on this average length of day.

The sun-dial time marks "apparent time," the actual varying length of each day. The sun-dial time, therefore, is nearly always some minutes ahead or behind that of a clock, the greatest discrepancy being about sixteen minutes for a few days in November. There are, however, four days in the year when the clock and the sun-dial agree perfectly in the time they indicate. These days are April 15th, June 15th, September 1st, and December 24th.

When in the eighteenth century clocks and watches began to come into wide-spread use sun-dials fell into neglect, except as an appropriate bit of ornament in gardens. At Castletown, in the Isle of Man, is a remarkable sun-dial with thirteen faces, dating from 1720.

It was usual to place on sun-dials appropriate mottoes expressing a sentiment exciting inspiration or giving a warning to better living. A dial that used to be at Paul's Cross, London, bore an inscription in Latin, which translated means, "I count none but the sunny hours." In an old sweet-scented garden in Sussex was a sun-dial with a plate bearing four mottoes, each for its own season: "After darkness, light;" "Alas, how swift;" "I wait whilst I move;" "So passes life." Sometimes short familiar proverbs were used like: "All things do wax and wane;" "The longest day must end;" "Make hay while the sun shines."

It is told of Lord Bacon, that, without intending to do so, he furnished the motto borne by a dial that stood in the old Temple Gardens in London. A young student was sent to him for a suggestion for the motto of the dial, then being built. His lordship was busy at work in his rooms when the messenger humbly and respectfully made his request. There was no answer. A second request met with equally oppressive silence and seeming ignorance of even the existence of the speaker. At last, when the petitioner ventured a third attack on the attention of the venerable chancellor, Bacon looked up and said sharply: "Sirrah, be gone about your business." "A thousand thanks, my lord," was the unexpected reply, "The very thing for the dial! Nothing could be better."

We see that the principle of the sun-dial has been recognized and utilized for many centuries; indeed, we still find sun-dials placed in gardens and parks although we rarely take the trouble to look to them for the time. Like the dinosaur and the saber-toothed tiger, they have had their day. They have been forced to give way to devices that overcame some of their objections; therefore we must not linger too long upon what is, after all, a closed chapter in the history of time-recording.

Time Telling through the Ages

Подняться наверх