Читать книгу Time Telling through the Ages - Harry Brearley - Страница 10
CHAPTER EIGHT
The Watch that Was Hatched from the "Nuremburg Egg"
ОглавлениеIn the second act of Shakespeare's play, As You Like It, when Touchstone, the fool, meets Jaques, the sage, he draws forth a sun-dial from his pocket and begins to moralize upon Time.
Touchstone's dial must have looked like a napkin-ring, with a stem like that of a watch, by which to hold it up edgewise toward the sun, and a tiny hole in the upper part of the ring through which a little sunbeam could fall upon the inner surface whereon the hours were marked. This pinhole was perhaps pierced through a slide, which could be adjusted up or down according to the sun's position at the time of year. In principle, therefore, it was a miniature of the huge dial of Ahaz of more than two thousand years before.
In another Shakespeare play, Twelfth Night, Malvolio is gloating in imagination over his coming luxury when he shall have married the heiress and entered upon a life of wealth and leisure.
"I frown the while," says he; "and perchance wind up my watch, or play with my – some rich jewel."
There, in those two quotations, we have the whole meaning of the watch in the time of Queen Elizabeth. Touchstone's dial was a practical convenience – a thing to tell the time. Malvolio's watch was a piece of jewelry, an ornament indicating wealth and splendor. While watches had been well known for many years, people wore them chiefly for display and told time by means of pocket sun-dials.
For the first watches we must go back to about the year 1500, shortly after America had been discovered, and when the great tower-clocks of de Vick and Lightfoot were not much more than a century old. In the quaint old town of Nuremberg there lived, at that time, one Peter Henlein, probably a locksmith. But a locksmith, in those days, would be an expert mechanic – more like a modern toolmaker; very likely an armorer also; capable of that fine workmanship in metal which we still wonder at in our museums. Nuremberg was then very much a medieval city, all red-tiled roofs and queer windows, where people went about dressed in trunks and jerkins and pointed caps and pointed shoes. It looked like Die Meistersinger, and Grimm's Fairy Tales, and pictures by Howard Pyle and Maxfield Parrish; very much like "Spotless Town," except that it was far from spotless.
Now, as you remember, there was not until long after this any means of making clocks keep anything like accurate time; so, instead of improving them, people competed with each other in devising novel and ingenious forms. There could be no more desirable novelty than a clock small enough to stand upon a desk or table, or even to be carried around. Such a clock could not well be driven by weights. But Peter Henlein overcame that difficulty by using for the motive power a coiled mainspring wound up with a ratchet, just as we still do to-day.
There is some dispute over attributing to Henlein the credit for this invention; but at least he did the thing, and it cannot be proved that anybody did it before him. "Every day," wrote Johannes Coeuleus, in 1511, "produces more ingenious inventions. A clever and comparatively young man – Peter Henlein – creates works that are the admiration of leading mathematicians, for, out of a little iron he constructs clocks with numerous wheels, which, without any impulse and in any position, indicate time for forty hours and strike, and which can be carried in the purse as well as in the pocket."
There was, however, no invention of any such thing as we mean by the term watch to-day that came complete from the mind of any one man, but the contrivance gradually grew, in shape and structure out of the small clock which could be worn at the belt or on a chain round the neck. It came to be called a watch because clock meant a bell that struck the hours. But many of the first watches had striking apparatus, and this circumstance added to the confusion of names. We slangily call a fat, old-fashioned watch a turnip; but the first watches were very much fatter and more old-fashioned, and might fairly have deserved the name. Before long, Henlein was making them oval in shape. Hence, they were called Nuremberg eggs.
Here, then, is something which we can really consider a watch. Let us see how it compares with those that we know to-day. In the first place, being egg-shaped, it was thick and heavy – you would not like to carry it in your pocket. It had no crystal and only one hand – the hour-hand. So much for the outside.
Inside, the difference was still greater. The works were made of iron and put together with pins and rivets. It was all hand-work – expert workmanship, indeed – but look at the works of your own watch and try to imagine cutting the teeth in those tiny gears, or making those delicate springs with files and hammers. As pieces of hand-workmanship, therefore, the watches made by Henlein and his followers were remarkable; but when compared with our modern watches, they were crude and clumsy affairs.
Furthermore, they were poor timekeepers. They had the old foliot balance running parallel to the dial. This was all very well as long as the watch lay on the table with the balance swinging horizontally. But as soon as it was carried, in a perpendicular position, the arms of the balance had to swing up and down, which was quite another matter. And then, of course, the crudeness of the works produced a great deal of friction. This made it necessary to use a very stiff mainspring, otherwise the watch would not run at all. Such a spring exercised more pressure when fully wound than when it was nearly run down. And so the worst fault of the foliot was that it speeded up under increased pressure.
The first improvements, and, in fact, the only ones for nearly two hundred years, were directed toward doing away with the unequal pressure of the mainspring and thus make the watch keep better time. If you look into the back of a very early watch, you may see a curious device consisting of a curved arm ending in a pinion, which travels round an eccentric gear of peculiar shape. This is the first type of equalizing mechanism; it was invented in Peter Henlein's time and was called the stackfreed; but it was a clumsy device at best and a great waste of power. Therefore it was gradually displaced by the fusee.
Perhaps one might have felt a certain amount of pride in carrying about such a thick, bulging mechanical toy, as were these early watches, but, as to possessing something that would keep correct time – that was a different matter. After admiring it and listening to its ticking, one would have to guess as to just how far wrong it might be. People did not figure closely on minutes and half minutes in the day of the Nuremberg egg; there was no "Wall Street" and no commuting. And this brings us to a real event in the whole story.
Jacob Zech, a Swiss mechanic, living at Prague in Bohemia, Austria, about 1525, began studying the problem of the equalization of watch mechanism. He was sure that there ought to be some better means than that of the clumsy stackfreed. Presently he hit upon the principle of the fusee, and Gruet, another Swiss, perfected it. At last it became possible to make a watch that would not run fast when first wound and then go more and more slowly as it ran down – and to do this in a really practical way. Before this time, a watch was a clumsy piece of ticking jewelry; now it became something of a real time-keeper. Therefore, it was not long before people began to want Swiss watches. These were the days when skilful Swiss craftsmen worked patiently in their little home shops, making some single watch-part and making it extremely well, while the so-called "manufacturer" bought up these separate parts, and assembled them into watches.
What was the fusee that brought about such a change? Not much to look at, surely – merely a short cone with a spiral groove running about it, and a cord, or chain, wound in this groove and fastened at the large end of the core. Its principle and its action were very simple, and that is why it was a great invention. Some one has said that anyone can invent a complicated machine to do a piece of work, but it takes real brains to make a simple