Читать книгу Natural History of the Racer Coluber constrictor - Henry S. Fitch - Страница 3

Оглавление

[1] Females.

[2] Males.

Table 3 shows that as compared with adults, the small young racers have stouter, stubbier bodies, relatively large heads, and, especially, large eyes. Allometric growth seems to continue throughout life and the changed proportions of the adults are accentuated in the largest and oldest individuals.

Lepidosis

Scalation that of typical colubrid (see Pl. 19); rostral large, extending back onto dorsal surface of snout, bluntly pointed behind; paired internasals considerably wider than long, convex anteriorly, almost straight-edged posteriorly, each extends laterally to naris; paired prefontals approximately twice size of internasals, and wider than long, extending laterally on each side to level of nostril; frontal convex anteriorly, concave on each side, bluntly pointed behind, nearly twice as wide anteriorly as posteriorly; parietals large; angle formed between them by frontal slightly more than 90 degrees; nostril large, situated between almost equal sized anterior nasal and posterior nasal plates; loreal slightly smaller than nasals, its anterior edge inclined forward superiorly; two rows of temporals on each side; in upper row, first one narrow and elongate, second much shortened, third intermediate in shape; in lower row all three approximately alike in size and shape; two postoculars, the lower larger; seven supralabials, first small and low, longer along upper edge than along lower, second slightly longer than high, third higher than long, contacting eye; fourth largest, contacting posterior part of eye, and lower postocular; fifth nearly as large, pointed above; sixth also large, pentagonal; seventh low and rectangular; on chin first pair of infralabials separate mental from anterior genials; second infralabial minute; third approximately twice its size; fourth much smaller, rhomboidal, fifth also large, pentagonal; sixth smaller, rhomboidal, bluntly pointed behind; seventh smaller, narrow behind; eighth small and elongate; second pair of genials longer and narrower than those of first pairs, separated from each other by smaller scales; genials in approximately five rows, but somewhat irregular in arrangement, mostly smaller and narrower than body scales; latter all smooth, arranged in 17 rows for about two-thirds of body length, then, by loss of third row on each side, reduced to 15; scales of neck region rounded and relatively small, one-third to one-fourth size of larger body scales; lowest scale row on each side largest with its scales much wider and less symmetrical than others; most of body scales of approximately hexagonal shape; on forebody they average approximately twice as long as wide, but farther posteriorly on body, width-length ratio gradually increases and some of scales, notably those of lowest row, approximately as wide as long; regularity of scale rows broken on sides just above vent by presence of many small additional scales; on tail scale rows drop out posteriorly in rapid succession, until on posterior third only four are present; ventrals strongly convex posteriorly, with free posterior edges, nearly half length of scales; anal plate divided, with diagonal suture; subcaudals in double series, those of right and left sides alternating; several minute subcaudal-like scales on each side of vent.

Dentition

In the racer the maxillary, palatine, pterygoid, and dentary bones bear teeth (Fig. 1). The teeth are all much alike in size and shape, small, sharp, and recurved, typically at an angle of approximately 50 degrees. The number of teeth present is variable. Because the teeth are small and loosely attached to the jaw bones, and often are broken off in the capture and ingestion of prey, each bone usually lacks part of its complement of teeth. Even the sockets vary somewhat in number between individuals, and between the left and right sides in some snakes. Most of the skulls that I examined were not thoroughly cleaned, and the adherent dried tissues made it difficult to obtain accurate counts of the sockets. In ten skulls from Kansas and Nebraska, most frequently occurring numbers of sockets for each of the dentigerous bones were: maxillary, 15; palatine, 11; pterygoid, 18; dentary, 18.


Fig. 1. Lateral view of right side of skull of adult female blue racer, × 4. University of Kansas Museum of Natural History no. 18305, from Greenwood County, Kansas.

Hemipenis


Fig. 2. Lateral view of injected and everted left hemipenis (slightly enlarged) of a blue racer from the Rockefeller Tract, Jefferson County, Kansas, showing heavy spines at base of organ, small spines of central zone and lamellae of terminal part. This hemipenis is not fully engorged.

Penial characters have proven to be useful in the classification of snakes, providing bases for separating subfamilies, genera, and species. In the racer even the subspecies have trenchant penial characters by which they may be separated in some instances. The hemipenis is roughly cylindrical, but widest at the base (Fig. 2). The sulcus spermaticus is unbranched. Approximately the basal one-third of the hemipenis has a smooth surface, broken only by the sulcus spermaticus and by three greatly enlarged spines, which form hooks—one anterior, one posterior, and one dorsal. The dorsal hook is the largest of the three. Distal to the smooth part is a zone of small spines, each recurved and mounted on a fleshy tubercle. The zone of spines is poorly developed on the anterior side and is interrupted on the posterior side in the vicinity of the sulcus spermaticus but is best developed on the posterior side a short distance above and below the sulcus spermaticus. The spines are arranged in several oblique rows. Those of the proximal row are best developed, and there is rapid diminution in the size of those situated farther distally. Approximately the distal two fifths of the hemipenis forms a third zone, lacking distinct spines, but having numerous deep longitudinal grooves, alternating with lamellae which have fimbriated edges, and which fuse with each other and divide to form a reticulated pattern.

Relationships

The large genus Coluber is much in need of revision. Its many species, perhaps more than a score in all, occur in North America from southern Canada south to Guatemala, in eastern and southwestern Asia, in southern Europe, and in North Africa. All are active, slender-bodied snakes having smooth scales in few rows, and having large eyes with well developed vision. The North American species fall into two natural groups, the typical racers, and the whip snakes, often assigned to a separate genus, Masticophis (Ortenburger, 1928). The whip snakes are more specialized than the typical racers in having the eyes more enlarged, and the body form more slender and attenuate, with number of scale rows more reduced. The racers of the Old World are more diverse. Inger and Clark (1943) suggested a partitioning of the genus Coluber on the basis of the pattern by which scale rows are reduced, from the maximum number on the forebody to the minimum number at the posterior end of the body, supplemented by certain characters of the hemipenis and of the cephalic scutellation. Besides Coluber and Masticophis these authors recognized within the group the genus Platyceps with several species in southern Europe and southwestern Asia; Zamenis with several species in the same region and in North Africa, and Haemorrhois, a monotypic genus of Spain, North Africa and several Mediterranean islands. Although apparently valid in principle, this arrangement has not been generally followed.

Exclusive of those species groups whose assignment to the genus Coluber are somewhat questionable, the remaining species in the genus are: C. constrictor occurring throughout most of the United States and south along a narrow Atlantic coastal strip of Mexico to Guatemala; C. oaxacae of southern Mexico; and C. spinalis of northern China. C. oaxacae is poorly known as only a few specimens have been collected, but seemingly it is a near relative and derivative of C. constrictor, especially of that species' southernmost population. C. spinalis is much more distinct, as might be expected from its geographical remoteness. It is a slender, active snake, of olive coloration dorsally with 17 scale rows and a bright yellow, black-edged dorsal stripe and yellow ventral surface. It is relatively small (up to 755 millimeters snout-vent length) and is partial to riparian habitats but is also found in forests and in dry and barren regions (Pope, 1935:224–226). It is known to feed upon lizards.

Range

The common racer has been recorded in each of the 48 states of the mainland of the United States, also in New Brunswick, Nova Scotia, southern British Columbia, and southward through Mexico where it is limited to a narrow strip of east coast lowlands but extends as far as Guatemala. C. c. constrictor occupies the northeastern states and extends south into the Appalachian and Piedmont. C. c. priapus with its associated races paludicola, helvigularis, and anthicus has an Austroriparian distribution, occupying the Atlantic Coastal plain and the Gulf Region, and extending north in the Mississippi Valley to southern Illinois and Indiana. C. c. paludicola is localized with two disjunct populations—in the Everglades and on Cape Canaveral, Florida. C. c. helvigularis is even more restricted in range and is known only from the Appalachicola region of the Florida Panhandle and the adjacent corners of Alabama and Georgia. C. c. anthicus occupies much of central and western Louisiana and adjacent Texas. C. c. flaviventris occurs throughout the Great Plains, east in the "Prairie Peninsula" through Michigan and northern Ohio and west to the Rocky Mountains. C. c. stejnegerianus occurs from Matagorda Bay in Texas southward through eastern Mexico, with a seemingly isolated population in the Sierra del Carmen region of northern Coahulia. C. c. mormon occurs in the Pacific Coast states and Great Basin.

Actually, the range limits and the continuity of distribution within the area outlined are still poorly known. The species has not been recorded from the northern parts of Maine, Vermont, New Hampshire, Michigan, Wisconsin, or Minnesota, nor from northeastern New York. It is generally absent from southwestern desert areas. Records are particularly scarce and scattered in the Rocky Mountain states, suggesting that the distribution in this area may be discontinuous. In a large area comprising all of New Mexico and Arizona, the western half of Colorado, and the southern halves of Utah and Nevada, records are so scarce as to indicate that the species is there represented by only a few well isolated relict colonies. The type locality of mormon is "Valley of the Great Salt Lake," and there are numerous records from the northern part of Utah east of Great Salt Lake (Woodbury, 1931:75), but a record from Moab is the only one known to me from the southern half of the state. The only records from western Colorado are from three miles east of Fruita and two miles west of Grand Junction, Mesa County (Maslin, 1959:56). Apparently the only valid record from Arizona is that of Shannon (1950:59) from Eagar, Apache County, in the east-central part. Shannon also recorded the racer from Boulder Dam in extreme southern Nevada. Brattstrom (1955:152) has recorded the species from the lower Pleistocene of southeastern Arizona (Curtis Ranch), bearing out the idea that the racer has partly withdrawn from a range formerly occupied in the Southwest at a time when cooler and moister climate prevailed. Other fossil occurrences are of late Pleistocene age—Vero Beach and Seminole, Florida (Brattstrom, 1953a:245) and, doubtfully, Rancho LaBrea, California (Brattstrom, 1953b:376). The range of mormon has been mapped (Wright and Wright, 1949:134) as extending east to south-central Montana on the basis of one specimen allocated on the basis of two characters. Otherwise the range of mormon seems to be entirely west of the Continental Divide, well separated from that of flaviventris by desert and mountain barriers. The conspecificity of mormon with the other subspecies needs to be more thoroughly investigated, and geographic variation within mormon also merits study.

Geographic Variation

The common racer and the several species of whip snakes (Masticophis) were revised by Ortenburger (1928). More recently with much larger series of specimens, Auffenberg (1955) again revised the classification of C. constrictor, but his study was concentrated in Florida and neighboring southeastern states with relatively little attention devoted to populations of the western and central United States. As the species occurs throughout most of the United States and south through the coastal lowlands of eastern Mexico to Guatemala, it is found over a wide range of environmental conditions. Various characters are subject to geographic variation, and some of them follow clines that are maintained over extensive areas. Such characters as the number of hemipenial spines, and the enlargement of one or more basal spines into hooks, the shape of the premaxillary bone, the number of maxillary teeth, the numbers of ventrals and caudals, color of eye, number of dorsal saddle-marks and of ventral spots in juveniles, and ratios of body proportions including tail length to total length have been used to characterize the subspecies.

Also important is the shade of coloration of adults. The subspecies constrictor, priapus and helvigularis that are characteristic of forested habitats in the eastern United States are black dorsally and have their ventral surfaces suffused to a large extent with dark or dusky coloring. Farther westward the ground color becomes progressively paler, greenish, grayish or light brown, and the ventral surface is yellow (white on the throat and neck). The same tendency appears in C. c. paludicola of the Everglades. The populations of arid climates in southern Texas and in the far western states are relatively pale colored. The species thus conforms to Gloger's Rule in changing from a pallid coloration in arid climates to a dark pattern with eumelanins predominating in a humid climate.

Perhaps the most important character that is subject to geographic variation in the racer, and certainly one of the most neglected, is body size. With information now available it is not possible to compare the sizes of different populations except in a general way. The best sources of information concerning size in several subspecies other than flaviventris, are the publications of Auffenberg (1949 and 1955). Comparison of these data with my own is not entirely satisfactory because Auffenberg did not indicate clearly differences in size between the sexes, nor indicate the boundary line between young and adults. Also, his measurements are of overall length. For the purpose of comparison I have subtracted 22.5 per cent, an approximation of ratio of average tail length, from Auffenberg's figures. He stated (1955:98) that the series of specimens on which measurements were based were those "with a uniform coloration," that is to say they had lost the juvenal pattern and were probably sexually mature. Whether the same statement applied to the large series of stejnegerianus in the same author's earlier paper (1949:55) is doubtful.

C. c. constrictor: 34 New York specimens averaged 806 millimeters (Auffenberg, 1955:96).

C. c. flaviventris: 100 Kansas specimens averaged 791 millimeters (males, 746; females, 836).

C. c. priapus: 171 Florida specimens averaged 713 millimeters (Auffenberg, 1955:96).

C. c. stejnegerianus: 291 Texas specimens averaged 664 millimeters (Auffenberg, 1949:54).

C. c. mormon: 94 West Coast specimens (Museum of Vertebrate Zoology) averaged 563 millimeters (males 515, females 600).

C. c. anthicus: 35 northern Louisiana specimens estimated to average 582 millimeters (Clark, 1949:249—the author did not present individual measurements, but indicated the numbers in several size groups in his sample).

The 100 flaviventris in the above list were recorded in June, July and August, a season when the young of the preceding year are still small, and these young were not included. In a fall sample 63 males averaged 729 millimeters and 65 females averaged 886 millimeters, but with the nearly grown young (44 males and 40 females) included, the averages were changed to 651 and 768 respectively. Maximum length perhaps express differences between the subspecies as well as, or even better than, the averages listed above. The following figures indicate some of the maximum overall length measurements in inches that have been published by various authors. These measurements pertain to females unless otherwise indicated.

C. c. constrictor: 743/4, 741/4, 73, 651/2 (Auffenberg, 1955:96).

C. c. flaviventris: 71 (Pope, 1944:172), 72 (Conant, 1958:147).

C. c. priapus: 521/2 (♂) (Auffenberg, 1955:98).

C. c. stejnegerianus: 37 (Auffenberg, 1949:54), 40 (Conant, 1958:148).

C. c. mormon: 511/2 (Museum of Vertebrate Zoology).

C. c. anthicus: 70 (Conant, 1958:149).

In my own study, the largest racers recorded from the Reservation and Rockefeller Tract had the following overall lengths: 59, 571/4, 551/2, 58 ♂ (projected from stub tail).

These sets of figures show that compared with the blue racer in Kansas, with which my own study was concerned, the black racer of the northeastern states reaches a larger size, while the racers of the Southeast and especially those of the far West and of southern Texas, are dwarfed. These size differences are almost certainly correlated with behavioral and ecological differences among the snakes involved. Adaptations to exploit certain types of prey and to utilize most efficiently certain habitats and types of cover, have led to divergent trends in different parts of the range.

Habitat

The racer dwells primarily in open situations, but as might be expected from its extensive geographic range, bringing it under the influence of diverse climates and habitats, its populations have diverged somewhat in adaptation to different environmental conditions. The eastern blacksnakes (subspecies constrictor and priapus) seem to prefer woodland and forest edge. In central Louisiana, anthicus occurs chiefly in an open type of woodland. The subspecies stejnegerianus is found chiefly in brushland and thorn forest. The western mormon is found in varied habitats, including moist streamside meadows, and chaparral. Published statements of herpetologists, based upon studies in limited areas, are briefly quoted below to show the trend of geographic change.

C. c. constrictor: This snake "occurs chiefly in fields" (Atkinson, 1901:148; Pennsylvania); "in more or less wooded regions and along hillsides and among bushes" (Surface, 1906:167, in Pennsylvania); "abundant, especially in wooded regions" (Hibbard, 1936:28, in Kentucky); "dry and more or less open places" (Conant, 1938:52, in Ohio); "old fields and areas about buildings" (King, 1939:572, in Tennessee).

C. c. priapus: In "drier parts of the [Okefinokee] swamp … seems to prefer blueberries and saw palmettos" (Wright and Bishop, 1915:159 in Georgia); "common in grassy fields and in upland woods" (Allen, 1932:13, in Mississippi); "abundant along fence rows … in dry pine-oak forest and in bottomland forest" (Trowbridge, 1937:296, in Oklahoma); "probably most abundant in open upland hammock or in old fields; limestone flatwoods" (Carr, 1950:80, in Florida); Oak and oak-hickory forest and small hill prairies in southern Illinois (Rossman, 1960:219).

C. c. paludicola: In "all parts of the freshwater Everglades, in cabbage palm hammocks, in salt marshes, and in mangrove swamps. On Key Largo … in mesophytic hammock" (Duellman and Schwartz, 1958:296, in southern Florida).

C. c. anthicus: In "wooded areas in the vicinity of briar patches or other brushy undergrowth" (Clark, 1949:249, in northern Louisiana); "especially grassy uplands" (Fitch, 1949:88, in central Louisiana).

C. c. stejnegerianus: Of 291, 94 were in scattered brush, 92 in sparse brush, 41 in lightly wooded areas, 26 in grassy areas, 24 in heavy brush, eight in semi-arid places and six in heavily wooded situations (Auffenberg, 1949:55, in southern Texas).

C. c. mormon: In "thin brush skirting open prairie land" (Lord, 1866:304, British Columbia); cottonwood-willow and water margin habitats in prairie (Dice, 1916:310–312, in eastern Washington); "grass; amid water cress; bank of small ditch near meadow; barley field; sandy ground covered with rocks and driftwood; among sedges; in sagebrush; swimming in irrigation ditch" (Grinnell, Dixon and Linsdale, 1930:149, in northeastern California); low foothills, around the fields, and in the timber and brush along the canyon bottoms (Woodbury, 1931:75, in Utah); "open woods of Garry oak and poison oak, on grassy slopes, in chaparral, and in grain or hay fields" (Fitch, 1936:644, in southwestern Oregon); "low hot canyons where it was found to occupy areas having rather dry, rocky hills" (Ferguson, 1952:68, in northeastern Oregon).

C. c. flaviventris: Pastures, meadows, and fields (Hurter, 1911:170, in Missouri); "usually frequents dry open fields, although it is often found in bushes or cut-over land which has grown up into thickets" (Ortenburger, 1928:181); "pasture lands and on hill sides" (Peters, 1942:183, in Illinois); "along the levees in the salt marshes" (Liner, 1954:82, in southern Louisiana); "common in both prairie and woodland habitat" (Smith, 1947:34, in east-central Illinois); Flood plain, sand around sage-sumac brush, rocky slopes (Fouquette and Lindsay, 1955:411, in northwestern Texas).

Several observers have described the habitat in Kansas as follows: "grassy valleys and thinly wooded hillsides" (Burt, 1927:5); "moist and dry habitats, in wooded areas, and in prairies" (Smith, 1956:237); Oak-walnut hillside forest, cultivated field, buckbrush-sumac, prairie (Clarke, 1958:22).

Every part of the 590-acre Reservation is used to some extent by blue racers living on this area. Home ranges of most individuals are so large as to include a variety of habitats, both woodland and grassland. The habitat preferences vary according to season. In autumn some racers migrating to rock ledges to hibernate are found in mesic forest, but at that time of year leaves have begun to fall and the forest floor is less dark and humid than in summer. In spring also racers not yet back on their summer ranges are often seen either along the hilltop ledges, or moving downhill through woods toward bottomland meadows. However, in summer, the finding of a racer in mesic woodland is a rare event. Occasionally the snakes make trips across such blocks of woodland hundreds of feet wide, but they do not linger in the woodland. In decreasing order of preference the habitats used by racers on my study area may be classified as follows:

1. Tall-grass prairie, (Plate 22) either original or regenerated, dominated by native perennial grasses in stands three feet to seven feet high, including big blue-stem (Andropogon gerardi), little blue-stem (A. scoparius) Indian grass (Sorghastrum nutans), and switchgrass (Panicum virgatum).

2. Pastureland, with introduced brome grass (Bromus inermis) and associated weedy vegetation.

3. Brush, in ravines, at woodland edge, and in riparian thickets.

4. Weedy fields, dominated by such pioneer plants as ragweeds, sunflowers, horseweed, milkweed, wild lettuce, aster and goldenrod.

5. Open type of woodland dominated by such trees as honey locust and osage orange.

These habitat types are interspersed on the study area, and each racer has a wide choice of habitats without travelling beyond the limits of its own chosen area.

Grassland that has been closely grazed, mowed or burned does not provide entirely adequate food or shelter, and under such conditions clumps of brush or other dense vegetation may be of critical importance. Throughout the racer's extensive range, fields of grain and hay at times provide suitable habitat, and may support large populations, but in spring, before the young cultivated plants have made much growth, or later in the season, after they have been cut, the racer may need to depend on adjacent areas of pasture, thicket, or woodland edge and the availability of such refugia to a large extent determines the numbers of racers on cultivated areas.

Temperature Relationships

In the locality of my study racers spend approximately half the year in winter dormancy. Earliest spring records and latest fall records for 13 years are shown in Table 4. The spring records in nearly all instances pertain to snakes found in the open or beneath flat rocks warmed by sunshine, usually at or near the rock ledges where hibernation occurs. Juveniles are especially well represented in these earliest spring records, and it seems that they tend to emerge a little earlier, on the average, than the adults, either because they have hibernated in more superficial and less well insulated situations or because their lesser body mass permits more rapid warming to activity than can occur in the adults. The latest fall records all pertain to racers trapped along the rock outcrops, and none was a young of the year.

Table 4. Earliest and Latest Recorded Annual Dates When Blue Racers Were Active on the Reservation or Rockefeller Tract

Year Earliest spring record Latest fall record Year Earliest spring record Latest fall record
1950 April 16 November 4 1957 April 30 November 2
1951 April 19 November 13 1958 April 25 November 20
1952 April 23 November 12 1959 April 6 November 10
1953 April 8 November 12 1960 April 22 November 6
1954 April 20 November 12 1961 April 19 November 1
1955 April 15 November 2 1962 April 23 October 27
1956 May 11 November 14

Most of the population undoubtedly emerged somewhat later than the average date of April 16 indicated by the records in Table 4, and retired somewhat earlier than the average date of November 8. However, a small percentage of the population probably emerged even earlier each year than my records indicate, and retired into hibernation later than my records indicate. In a typical year, temperatures in April and early May are only occasionally above the level at which racers are able to become active, but are below this threshold most of the time. The same statement applies to an autumn period of late October and November. Most racers are dormant in their hibernacula during these transitional periods of spring and autumn, but some—those that have emerged early in spring, or those that have not yet retired (in fall)—retreat to temporary shelters and revert to a semi-torpid state when temperatures fall below the critical level.

Fig. 3 shows the relative extent of activity along the hilltop outcrops, as reflected by numbers of racers caught at different times during the autumn. Data from 14 years are combined, and the large composite sample indicates that in an average year there is relatively little activity along the hilltop outcrops in early September, but that activity rapidly increases to a peak in mid-October and then tapers off rapidly, usually ending in mid-November, but occasionally ending as early as late October or as late as late November.

The racers recorded in traps had, in many instances, been confined in them for from one to three days before they were found. For any one year records are not sufficiently numerous to show the trend as well as Fig. 3, but Fig. 4 shows year-to-year differences; 1958 was a fairly typical year, and also was the year in which the largest sample was obtained; in 1949 the largest catches were made earlier than usual, and the racers retired early into hibernation; in 1954 warm weather persisted until unusually late in autumn, and racers remained active beyond the time when they ordinarily would have been hibernating; in 1955 and 1961 the most concentrated activity along the outcrops, as reflected by day to day catches, came later than usual, but unseasonably cold weather ended all activity abruptly, earlier than usual.


Fig. 3. Records of blue racers trapped along hilltop limestone outcrops in autumn, a composite sample of 14 years (1949 through 1962) from the Reservation and Rockefeller Tract, showing the catch grouped in ten-day intervals, beginning with September 1 to 10 and ending with November 20 to 29. Averages of the maxima, means, and minima of daily temperatures for each period are shown.

The racer's annual cycle of activity is, of course, controlled primarily by the weather, and is much delayed or accelerated in some years. But certain stabilizing factors cause the racer's annual cycle to be less variable than that of the weather. For example, in spring when persistently cool weather delays emergence from hibernation beyond the normal time, the increasing azimuth of the sun, and more intense sunshine cause the soil to warm, despite low air temperature, until emergence is finally triggered. Having once emerged, the racer is able to control its bodily temperature to a large extent by basking in sunshine to gain warmth, or by seeking shade or underground shelter to escape overheating. By such behavioral thermoregulation extremes of weather are neutralized, or at least buffered to some degree.


Fig. 4. Yearly variation in catch of blue racers along hilltop outcrop in autumn on the Reservation and Rockefeller Tract, grouped in same ten-day intervals indicated for Fig. 3.

In the course of my study no racers were found in their actual hibernacula. Insofar as known, these were always in deep crevices in strata of limestone near hilltops, and were inaccessible except by removal of the solid rock. The crevices where racers hibernate are known to be several feet deep in some instances, extending well below the frost line. Periodic temperature readings in two such crevices at depths of 12 inches and 30 inches, taken in the winter of 1954 (Fitch, 1956:471) showed that temperatures during dormancy are usually well within the range 0°C to 10°. Whether the racers congregate in hibernating masses in regular "dens" on the Reservation has not been definitely determined, but if so, most of the hibernating groups must be small, because those trapped along the ledges are well scattered, and, in fact, give the impression of being rather uniformly distributed along them. However, ledges of northward exposure are not used as hibernation sites, so far as known, and those of full southward exposure are perhaps preferred, especially where the hilltop has a southward projecting spur, and the exposed rock face is extensive, with many cracks and fissures. I have been unable to detect differences in types of hibernation sites preferred between the racer and the copperhead, which is somewhat more numerous on the same area.

Several authors have contributed to knowledge of hibernation in the racer. Boyer and Heinze in Missouri (1934:195) noted that blue racers often were associated with copperheads in the vicinity of places chosen for hibernation. Burt (1935:329) in Kansas found blue racers emerging from dens among rocks on a prairie hillside, associating with other snakes, Diadophis punctatus, Elaphe guttata, and Pituophis melanoleucus. In the Chicago region, Pope (1944:173) reported scores of blue racers aggregating in October on and around a sand dune with oak woodland. In Ohio, Conant (1938:55) found three blue racers hibernating together about three feet underground in a small hole. One found at another locality had apparently hibernated in company with a massasauga (Sistrurus catenatus). In Maryland Cohen (1939:137) saw racers (C. c. constrictor) in the act of emerging from an old vole burrow that was a communal hibernaculum, on April 6, 8, and 10. Air temperatures at the time of emergence were 12.5° and 18.5° Centigrade. In Illinois, Schroder (1950:1–2) found seven blue racers hibernating in masses, intertwined with each other and with bull snakes at depths of 36 inches and 42 inches in an abandoned mammal burrow in a sand dune area in early February.


Fig. 5. Bodily temperatures of blue racers kept in a large outdoor enclosure and checked from time to time when they were active and the sun was shining, in June and July, 1962.

In the course of routine field work I often carried a Schultheis quick-reading thermometer, and from time to time I had opportunities to take the body temperatures of blue racers newly captured by hand. The trend of these records indicated the temperature range within which the snakes normally limit their activity, and the preferred temperature. In an earlier publication (Fitch, 1956:459–460) based on a few more than half the number of records of temperature now available, I discussed responses of the blue racer to temperature. The newer data bear out the trends previously revealed; of 60 records, 39 are within the six-degree range from 29° to 35°, and records are most concentrated in the one-degree range, 34° to 35°. Racers were found active at air temperatures between 15.5° and 32.4°, with the greatest concentration between 26° and 27°. Compared with most other kinds of North American snakes, the racer is remarkably tolerant of heat, and often is several degrees warmer than the level that those of other genera will normally tolerate. Racers have been seen crawling in the sunshine, or basking on days that were uncomfortably hot for humans. For example, on August 28, a large female racer released from a trap was followed and her behavior observed; after crawling some 50 feet through the grass she climbed from a ditch bank onto sunflower stalks and elm saplings, and came to rest among the stalks, in a spot strategically situated for catching grasshoppers. More than half her body was exposed to sunshine and air temperature was slightly above 34° Centigrade, yet the snake showed no sign of discomfort, and for the several minutes that she was kept under observation, did not attempt to withdraw into the shade.


Fig. 6. Bodily temperatures of blue racers captured by hand in their natural surroundings. The preferred level is approximately the same as indicated by Fig. 5 (between 29° and 36° Centigrade), but some of the racers caught were not fully active and had lower temperatures. Some bias results from the fact that those having the lowest temperatures were the least active and hence were most easily caught.


Fig. 7. Air temperatures recorded at captures of the racers whose records were used in Fig. 6. An active racer typically maintains, by basking, a bodily temperature several degrees warmer than the air.


Fig. 8. Bodily temperatures of blue racers found in live-traps at Harvey County Park. Opportunity to regulate temperature by behavior was limited in these snakes in traps, which tended to match ambient temperatures.

At the Harvey County study area, bodily temperatures were recorded in many of the racers that were caught in traps. These records are much less significant than the records obtained from racers caught by hand and promptly checked for bodily temperatures. The temperatures of the trapped snakes may, to a large extent, reflect the temperatures of air and soil at the time. However, despite their confinement, the trapped racers probably were able to exercise some control over their temperatures by shifting from shade to sunshine, or from the top of the trap to its bottom, where they would be in contact with the substrate. In most of the racers removed from traps, as in those caught by hand, bodily temperatures were somewhat above air temperatures, but the difference was less in the former group of snakes. Figure 8 shows the bodily temperatures of these snakes removed from traps. Occasionally racers died in the traps from overheating. On July 2, 1960, each of two racers in traps had temperatures of 39.4°. One of these was especially vicious and frantic in its attempts to escape, but otherwise seemed unharmed. The second racer was dead, seemingly having succumbed just before it was found. Probably prolonged exposure to temperature in excess of 39° would always result in death of the snake. Racers and other snakes that had become overheated in the traps and were nearing exhaustion had a characteristic limp feel when they were handled. In June, 1960, heat tolerance of a halfgrown racer was compared with that of several other snakes including a copperhead, garter snakes, and ringneck snakes. Each snake in turn was enclosed in a plastic tube plugged with cotton at one end, the snake having a quick-reading thermometer taped in place for a rectal reading. The tube was then placed in sunshine. Over periods of minutes the enclosed snake passed through a characteristic cycle. Soon it would begin to register discomfort as its temperature rose rapidly. Its struggles would become increasingly violent, then would cease abruptly. The snake would suddenly collapse, its body mostly limp, but knotted in slow contortions, its mouth gaping widely. Within a few seconds all movements would cease, but in each instance the seemingly dead snake was soon revived by holding it in cold running water. The copperhead, garter snakes, and ring-necked snakes all collapsed at temperatures near 41°. At this same temperature the racer showed signs of acute discomfort, but did not collapse even after many minutes of exposure. Probably more protracted exposure at this level would have been fatal to the racer as well as to the other kinds tested.

Home Range and Movements

Blue racers that were recorded on more than one occasion were rarely caught again at the original location. For different individuals, distances between capture points ranged from zero up to a little more than three-fourths of a mile. The area of concentrated study was a mile and a half in greatest diameter; there was scant opportunity for capturing racers that moved greater distances. Even those that moved as far as a mile would have passed beyond the boundaries of the study area in most instances. Many of the marked racers that disappeared from my records probably moved beyond the limits of the study area. Nevertheless, in the great majority of instances, the distances between successive capture points for the same individual were relatively short, indicating that each racer tends to remain permanently in a restricted area.

Most captures were made in the type of grassland or brush that provides favorable habitat for the racer during the season of activity, but many other captures were made in woodland along the rock ledges where the snakes come to hibernate. Four different types of movement may be recognized: 1) those in the rock ledge area where hibernation occurs; 2) those between the area where the summer is spent and the hibernation ledge—an actual small scale seasonal migration which takes place in spring and autumn—3) those within a home range, which are part of the day-to-day activities of the racer, and, 4) wandering movements by which the racer shifts its activities, perhaps permanently, from one area to another. In the records of any one snake these different types of movements cannot always be sorted with certainty. Each type will be discussed separately.

Relatively few movements along the ledges were recorded. It seems that having migrated to a ledge, the racer promptly finds its hibernaculum and retires for the winter. In spring there is equally prompt scattering of the emerging racers, which no longer find the ledge attractive. Most recorded movements along the ledges were short. Of 76 movements, nine exceeded 1000 feet, and only four others exceeded 500 feet. Most of the shorter movements were recorded within an autumn season, but several were recorded after the lapse of one or more seasons of activity. The longer movements were as follows: 1250 feet after 8 seasons (male); 1300 feet after three seasons (female); 1600 feet after one season (female); 2000 feet after one season (female); 2280 feet after seven seasons (male); 2200 feet in same season (female); 2410, 2600, and 3200 feet, each after one season (all males). The trend of these records suggests that the tendency to return year after year to the same hibernaculum is not strong; after using one for a period of years, the racer may abandon the stretch of ledge and, starting out in the opposite direction from its summer range, find a new hibernaculum as much as half a mile from the old one. Records of distances between capture points on the ledges for individual racers are shown in Fig. 12.

A total of 124 movements between summer ranges and ledges were recorded, and the distances averaged 1309 feet—approximately a quarter mile. Some racers living in hilltop fields may have had home ranges that included rock ledges, or at least were adjacent to them. In such instances no seasonal migrations would have been necessary to reach hibernacula in the autumn and summer ranges in the spring. Several short movements—100 feet, 150 feet, and 200 feet—can be explained on the basis that home ranges and hibernation ledges overlapped or were near at hand, but most of the movements were longer. The longest movement was 4020 feet, after a lapse of four seasons. Twenty-four movements exceeding 2000 feet were recorded. For these the intervals between captures averaged more than double the time for the remaining movements, indicating that the longtime permanent shifts were involved in many instances.

Natural History of the Racer Coluber constrictor

Подняться наверх