Читать книгу Organic Electronics for Electrochromic Materials and Devices - Hong Meng - Страница 4
List of Illustrations
Оглавление1 Chapter 1Figure 1.1 Solar irradiance spectrum above atmosphere and at the surface of ...Figure 1.2 The scheme of three types of electrochromic devices.Figure 1.3 The roadmap of EC materials development.Figure 1.4 The spectroelectrochemistry (SEC) of a black‐to‐transmissive EC m...Figure 1.5 (a) The electrochromic contrast of a small molecule EC material....Figure 1.6 The switching time of EC materials. (a) Electrochemical switching...Figure 1.7 The calculation of Q d.Figure 1.8 Different types of CE value of the same EC materials.Figure 1.9 Open‐circuit memory tests of PBOTT‐BTD spray coated on an ITO‐coa...Figure 1.10 Charge density (a) and transmittance (b) variation curves of ECD...Figure 1.11 Recommended testing guidelines for EC windows for exterior archi...
2 Chapter 2Figure 2.1 Main concerns in electrolyte.Figure 2.2 Schematic showing printing of colored‐to‐clear electrochromic pap...Figure 2.3 A fabrication process for lateral paper ECDs showing inkjet‐print...Figure 2.4 Synthetic routes for P[S‐r‐VBMI][PF6].Figure 2.5 Synthetic routes for (PS‐b‐PMMA)18.Figure 2.6 (a) The mechanism of self‐healing process for electrochromic PPFM...Figure 2.7 Pictorial model of a preparation of a cross‐linked polymer.Figure 2.8 (a) General synthetic routes for P(NIPAM‐fv [DAV]) IL gels and P(...Figure 2.9 The evolutions of morphology of ceramic filler in SCEs.Figure 2.10 A switchable single‐molecule electrochromic device derived from ...Figure 2.11 Schematic representation of the synthesis of PIL‐b‐CD and PIL‐Fc...Figure 2.12 An ECD structure containing a gel electrolyte composition combin...Figure 2.13 An electrochromic device containing DNA‐based electrolyte.
3 Chapter 3Figure 3.1 Commonly utilized device structure for small molecule electrochro...Figure 3.2 Technology development of small molecule electrochromic materials...Figure 3.3 General structure for violene‐type electrochromics.Figure 3.4 Electrochromic mechanism of violene–cyanine hybrid material.Figure 3.5 Structure of cyanine–cyanine hybrid materials.Figure 3.6 Structure of cyanine–cyanine hybrid materials.Figure 3.7 Structure of the cyanine–cyanine hybrid with a cyanine unit at on...Figure 3.8 Mechanism of violene–cyanine hybrids.Figure 3.9 Structure, absorption spectra, and images of colored cells.Figure 3.10 Structure of the TP film.Figure 3.11 Structure of biphenyl ester compounds with larger conjugated sys...Figure 3.12 Structures of oligothiophene derivatives, 5,5″‐dicyano‐2,2′: 5′,...Figure 3.13 (a) Molecular structures of OHC‐3T‐CHO and X‐T. (b–d) Schematic ...Figure 3.14 Mechanism of oligothiophene derivatives.Figure 3.15 (a) Molecular structures of 3TB, 3EB, 3ETB, and 3TB‐4EDOT. (b) P...Figure 3.16 (a) Molecular structures of 1EDOT‐2B‐COOCH3, 2EDOT‐2B‐COOCH3, ED...Figure 3.17 Structure of common isophthalate derivatives.Figure 3.18 (a) Electrochromism of 5‐substituted isophthalate derivatives an...Figure 3.19 Calculated HOMO, LUMO, and LUMO + 10 of the reduced species of M...Figure 3.20 Known reduction process of nitrobenzene.Figure 3.21 (A) Electrochromism of 5‐substituted isophthalate derivatives (w...Figure 3.22 Structures of Bis‐isophthalate derivative IS1‐6.Figure 3.23 UV–visible spectra and photos of displayed colors before and aft...Figure 3.24 Structure of the TP film.Figure 3.25 Optical (at 530 nm) (top) and electrical current (bottom) respon...Figure 3.26 (a) Structure of eleven esters synthesized and (b) photographs o...Figure 3.27 (a) Cyclic voltammograms of diesters and (b) in situ electrochem...Figure 3.28 Structure, synthesis, and properties of EC materials based on ph...Figure 3.29 Structure and UV spectra of conjugated anodically coloring elect...Figure 3.30 Synthesis and structures of azobenzene‐4,4′‐dicarboxylic acid di...Figure 3.31 Electrochromic mechanism of ADDEDs.Figure 3.32 Structure of pyridinium electrochromic materials.Figure 3.33 Molecular structures of electrochromic 2,4,6‐triphenyl‐1,3,5‐tri...Figure 3.34 Synthetic scheme for methyl ketone and (A) absorption spectra of...Figure 3.35 The structures of seven methyl ketone molecules and the colors o...Figure 3.36 (a) The synthetic route of M5; (b) The HOMO (bottom) and LUMO or...Figure 3.37 The electrochromic mechanism of M5 with a one‐electron reduction...Figure 3.38 The structure, electrochromic mechanism, and photographs of the ...Figure 3.39 (a) Lactone ring‐opening–closing reaction of fluoran dye. (b) Th...Figure 3.40 Mechanism of the reaction.Figure 3.41 Mechanism of imaging using a leuco dye on a mesoporous TiO2 elec...Figure 3.42 (A) The switch mechanism of fluorescein with electro‐reduced p‐b...Figure 3.43 (a) The fluorescence switching mechanism induced by p‐BQ as an e...Figure 3.44 Bonding alteration process of Rh–N via bond‐coupled electron tra...Figure 3.45 (a) Bonding alteration process of Rh–N via bond‐coupled electron...Figure 3.46 (a) Molecular structures of RHMA‐M1–RHMA‐M6 (the colored shading...Figure 3.47 The switch mechanism of fluorescein with electro‐reduced p‐benzo...Figure 3.48 (a) Structure of DMCS‐TPA and BMBCP and (b) photographs of DMCS‐...Figure 3.49 (a) Chemical structures of ambipolar EC materials BDP1–BDP6, (b)...Figure 3.50 (a) Schematic diagram of color change for ambipolar materials, (...Figure 3.51 (a) Structures of Thiele's hydrocarbon and bridged tetra‐aryl‐p‐...
4 Chapter 4Scheme 4.1 Development routes of viologen.Figure 4.1 Viologens in three forms: R1 and R2 refer to the substituent at n...Figure 4.2 Adsorption of viologen on the surface of nanocrystalline electrod...Figure 4.3 Structure of ester viologen.Figure 4.4 Color coordinates of asymmetric viologens device. a Transmittance ...Figure 4.5 Different devices and color coordinates.Figure 4.6 Normalized absorption and emission spectra of H2TTz2+, Me2TTzFigure 4.7 Fluorescence quenching.Figure 4.8 Multilayer PDI‐MV device.Figure 4.9 Cyclic voltammograms of a 10 bilayer film at various scan rates a...Figure 4.10 The structure of photographs device.Scheme 4.2 The synthesis route of phosphoryl‐bridged pyridiniums.Figure 4.11 (a) Three‐electrode liquid crystalline cell. (b) Optical absorpt...Figure 4.12 (a) Fluorescence spectra of the applied voltage of the gel of 10...Figure 4.13 Side‐chain viologen‐based polymers.Figure 4.14 Spectral absorption of the device.Figure 4.15 Reversible photochromism spectrum.Figure 4.16 Synthesis of polyviologens via Menshutkin reaction.Figure 4.17 Synthesis of P(NIPAM‐DAV) IL gels and P(NIPAM‐BVIm‐DAV) gels....Figure 4.18 Thermochromic and electrochromic effect.Figure 4.19 Illustration of five‐layer classic structure.Figure 4.20 Illustration of simple sandwich structure.Figure 4.21 Illustration of cathode–anode separation structure.Figure 4.22 Illustration of reflective device structure.Figure 4.23 The structureof common redox mediators.Figure 4.24 Combination of GQDs anion and viologen.Figure 4.25 Photograph of RGO film in ethyl viologen device.Figure 4.26 (a) Formation of gel electrolytes based on MOP chemistry and (b)...Figure 4.27 Self‐healing electrolyte gel.Figure 4.28 (A) Dimerization behavior of radical cation. (B) Absorbance spec...Figure 4.29 The representative structure and components of ECD.
5 Chapter 5Figure 5.1 Technology development of PB.Figure 5.2 Unit cell of the soluble (a) and insoluble (b) PB compounds [24]....Figure 5.3 Transmittance spectra at different potentials with corresponding ...Figure 5.4 A schematic of the direct (blue) and indirect (red) synthetic met...Figure 5.5 Reaction scheme for PB synthesis [43].Figure 5.6 Schematic diagram for the hydrothermal process (a) and reaction m...Figure 5.7 The structure (a) and transmittance spectra (b) of the PANI/PB‐co...Figure 5.8 The structure (a) and transmittance spectra (b) of the PANI/PB/WOFigure 5.9 (a) The plot of optical density change at 650 nm vs the amount of...Figure 5.10 CV (a), absorbance (b), switching (c), and chromic (d) propertie...Figure 5.11 Switching response at 600 nm (a) and corresponding photographs i...Figure 5.12 Absorbance spectra under different potentials (a), chromic prope...Figure 5.13 Structure (a), CV (b), transmittance spectra (d), and switching ...Figure 5.14 Structure (a), bleached state (b), colored state (c), transmitta...Figure 5.15 Absorbance at 720 nm (a), size distribution (b), and absorbance ...Figure 5.16 SEM images of the CNTs/PB film (a) and the ITO/PB film (b) and C...Figure 5.17 CV curves (a), photos (b), and switching response of T ave (e) fo...Figure 5.18 (a) Fabrication procedure of the ECD based on TiO2@PB core–shell...Figure 5.19 (a) Visible absorbance spectra of the reduced CoHCF films, which...Figure 5.20 (a) Schematic representation of extraction of NiHCF nanoparticle...Figure 5.21 CV (a), transmittance spectra (b), and cycling reversibility (c)...Figure 5.22 CV (a), transmittance spectra (b), transmittance response at 750...Figure 5.23 Anodic charge capacities in the first CV cycles (A) and percenta...Figure 5.24 Transmittance spectra (a), CV and transmittance response (b), an...Figure 5.25 (a) A color palette of the PBA precipitates, (b) transmittance s...Figure 5.26 Synthesis procedure (a) and AFM (b) of PEI–graphene; (c) CV of t...Figure 5.27 (a) General working principle on the self‐powered visual UV phot...Figure 5.28 A schematic illustration of the self‐powered biosensor (a): (A) ...Figure 5.29 Working principle (a) and the fluorescence spectrum (b) for the ...Figure 5.30 (a) Schematic diagrams of operating mechanisms of (A) the EESD i...
6 Chapter 6Figure 6.1 Structure of common aromatic molecules utilized in electrochromic...Figure 6.2 Diagrams of doping process for polythiophene, polypyrrole, and po...Figure 6.3 (a) Electronic band evolution for nondegenerate ground‐state conj...Figure 6.4 Investigations on the electrochemical process of P3HT.Figure 6.5 Synthesis of thiophene‐based homopolymer and copolymer via oxidat...Figure 6.6 Examples for copolymerizing ECPs via Suzuki (upper) or Stille (do...Figure 6.7 Diagrams for research works employing DHAP.Figure 6.8 Commonly utilized building blocks for thiophene‐based electrochro...Figure 6.9 Effect of interring strain.Figure 6.10 Steric strain‐increasing or relaxing strategy.Figure 6.11 Effect of bulky side chains.Figure 6.12 Progress of yellow and orange ECPs.Figure 6.13 Typical example of red ECPs.Figure 6.14 Molecular structure, diagram, and photography of electrochromic ...Figure 6.15 Device or processing developed based on magenta ECPs.Figure 6.16 Molecular structure and displayed color changes of thiophene‐bas...Figure 6.17 Multicolored electrochromisms. Source: Reproduced with permissio...Figure 6.18 Green to soil‐like colored materials and relative devices.Figure 6.19 Triarylamine‐based anodic electrochromic polymers.Figure 6.20 Chemical structure of the monomers 3‐ETSNa and 3‐BTSNa.Figure 6.21 (a) Chemical structure of the polymers. (b) Concentrated water s...Figure 6.22 Chemical structure of the polymers P2 and P3 and the correspondi...Figure 6.23 Figure 6.23 Square‐wave potential‐step chronoabsorptometry of (a)...Figure 6.24 Chemical structure of the polymer P4 and the corresponding polym...Figure 6.25 General overview of the conversion of an organic soluble polymer...Figure 6.26 (a) Spectra recorded in 50 mV increments from −0.80 to +0.70 V v...Figure 6.27 Electrochromic properties of water‐processable ProDOT derivative...Figure 6.28 Solubility tuning of ProDOT with four‐ester functional side chai...Figure 6.29 Proposed mechanism for electropolymerization of pyrrole by Diaz ...Figure 6.30 Electronic energy diagrams and structures for (a) neutral PPy, (...Figure 6.31 Electrochromism of polypyrroles.Figure 6.32 Technology development of polypyrrole derivatives.Figure 6.33 Chemical structure of N‐substituted polypyrrole derivatives.Figure 6.34 Color changes and the optical contrast of polymer PPy6 at differ...Figure 6.35 (a) Color changes of polymers PPy17, PPy18, PPy19, and PPy20. (b...Figure 6.36 (A) Spectroelectrochemistry of PEDOP in 0.1 M LiClO4/PC at appli...Figure 6.37 Completing the puzzle. Shown in blue, the N‐substituted PXDOP fa...Figure 6.38 Chemical structure of 3,4‐substituted polypyrrole derivatives.Figure 6.39 UV/vis–NIR transmittance spectra for the neutral (a), intermedia...Figure 6.40 Chemical structure of D–A type polypyrrole derivatives and the e...Figure 6.41 Chemical structure of polypyrrole‐based terarylene systems.Figure 6.42 Mechanisms of electrochemical oxidation of carbazole. Cyclic vol...Figure 6.43 Technology development of polycarbazole derivatives.Figure 6.44 (a) A segment of poly(carbazole‐co‐phenylene) depicting (1) neut...Figure 6.45 Spectroelectrochemical spectra and colors of (a) PCz6 (0.4–1.35 ...Figure 6.46 (a) Colorimetric data for polymers PCz13, PCz14 and PCz15.(b...Figure 6.47 Electronic absorption spectra and the colors of polymer PCz17 on...Figure 6.48 (a) Electronic absorption, transmittance behaviors, and colors o...Figure 6.49 Cyclic voltammograms and color changes of (a) PCz25, (b) PCz26, ...Figure 6.50 Chemical structure of linear polycarbazole derivatives.Figure 6.51 Figure 6.51 Spectroelectrochemical spectra and colors of (a) PCz1...Figure 6.52 Figure 6.52 Spectroelectrochemical spectra and color changes of (...Figure 6.53 (a) Spectroelectrochemical spectra of PCz37 between −0.3 and + 1...Figure 6.54 UV–visible absorption spectra of (a) PCz39 and (b) PCz40 films o...Figure 6.55 UV–visible absorption spectra of (a) PCz42 and (b) P(tnCz1–bTp2)...Figure 6.56 Electropolymerization of (a) NO2–3Cz and (c) NH2–3Cz. Spectroele...Figure 6.57 Figure 6.57 Spectroelectrochemical spectra and color changes of (...Figure 6.58 Chemical structure of cross‐linked polycarbazole derivatives.
7 Chapter 7Scheme 7.1 Chemical structures of some typical commercialized PIs and PAs.Scheme 7.2 Chemical structures of the first TA‐based polyimides and TA‐based...Figure 7.1 Cyclic voltammetric diagrams of the first EC PI and its EC behavi...Scheme 7.3 The oxidation pathways of MV class I–III monomers.Figure 7.2 Absorption spectral change of MV class I–III compounds at various...Figure 7.3 Development of TA‐based electrochromic PIs/PAs.Scheme 7.4 The oxidation process of TPA and the reaction scheme of unstable ...Scheme 7.5 TPA‐based polyamides with protecting groups.Figure 7.4 The cyclic voltammetric diagram and color changes in electrochemi...Scheme 7.6 Introduction of increased electroactive groups towards multiple c...Figure 7.5 Electrochromic behavior of multiple color PI 2a and PI 2b thin fi...Figure 7.6 Electrochromic behaviors of the NIR EC PIs/PAs with pendant group...Scheme 7.7 Chemical structures of EFC TA‐based PIs/PAs by introduction of lu...Figure 7.7 EC properties of CN‐PA/CN‐PI and EFC behavior of CN‐PI.Scheme 7.8 Chemical structures of polyimides with dual functions of memory a...Scheme 7.9 Novel multifunctional polyimides with multiple stimuli‐responsive...Scheme 7.10 Typical multiple color PIs/PAs with increased electroactive TPA ...Figure 7.8 (a) Cyclic voltammograms of polyamide PA 11 film onto an indium t...Figure 7.9 TA‐based black‐to‐transmissive EC copolymer (A) and EC devices co...Scheme 7.11 TA‐based EC poly(amide‐imide)s.Scheme 7.12 TA‐based EC poly(ether‐imide)s and poly(ether‐amide)s.Scheme 7.13 TA‐based EFL polyamides with cycloaliphatic (PA 12a) and aromati...Figure 7.10 (a) Electrochromic behaviors of EC polyimides PI 8a and (b) devi...Scheme 7.14 TA‐based high‐contrast‐ratio EC PIs with alicyclic nonlinear dii...
8 Chapter 8Figure 8.1 Electronic transitions in transition metal complexes.Figure 8.2 (a) A possible mechanism for the electrochromic change in Fe‐base...Figure 8.3 (a) The molecular structure of ligand bis(terpyridine)s and the p...Figure 8.4 Preparation of the Fe(II)‐based metallo‐supramolecular polymer wi...Figure 8.5 Illustration of the 3D structure metallo‐supramolecular polymer....Figure 8.6 (A) Molecular structure of CoII–bis‐terpyridine metallo‐supramole...Figure 8.7 (A) Molecular structure of ZnII‐based metallo‐supramolecular poly...Figure 8.8 (a) Synthetic route of CuI–o‐phenanthroline metallo‐supramolecula...Figure 8.9 (A) Molecular structure of Eu(hfa)3(H2O)2 and HV2+ and corres...Figure 8.10 (A) Molecular structure of heterometallo‐supramolecular polymers...Figure 8.11 (a) Formation of ruthenium‐based monolayers on ITO‐coated glass....Figure 8.12 Molecular structure of electropolymerizable monomer.
9 Chapter 9Figure 9.1 The roadmap of EC MOFs and EC COFs.Figure 9.2 The synthesis of the simulated structure of Zn(NDI‐H), Zn(NDI‐SEt...Figure 9.3 The color changes and the corresponding voltages of Zn(NDI‐H), Zn...Figure 9.4 (a) Synthesis and simulated structure of M‐NDISA. Spectroelectroc...Figure 9.5 (a) Simulated molecular structure of NU‐901 and the scanning elec...Figure 9.6 (a) Absorption spectrum change and (b) color change of NU‐901 fil...Figure 9.7 The framework structure of [CuCl2(TTPA)·1.5DMF] n : (a) one TTPA or...Figure 9.8 Solid‐state in situ spectroelectrochemical spectra and color chan...Figure 9.9 Molecular structure of Ni‐BINDI (a) and Ni‐CHNDI (b) and the morp...Figure 9.10 (a) CV curves of Ni‐CHNDI at different scan rates (The peak curr...Figure 9.11 EC performance of Ni‐BINDI and Ni‐CHNDI. (a) UV–vis absorbance s...Figure 9.12 (a) Simulated molecular structure of NBU‐3 and (b) the SEM image...Figure 9.13 The photo‐induced color change of NBU‐3.Figure 9.14 The reversible color change of NBU‐3 in CV test.Figure 9.15 Structure of the double‐sided device and the color change of the...Figure 9.16 (a) Structure of the DHTP@Zn‐MOF‐74 composite. (b) The film fabr...Figure 9.17 EC behavior of DHTP@Zn‐MOF‐74. (a) CV cycles and (b) color chang...Figure 9.18 (a) Molecular structures of COF3PA‐TT and the synthesis me...Figure 9.19 (a) CV curves of the COF3PA‐TT EC electrodes measured at v...Figure 9.20 Growth TATF COFs nanofibers on ITO glass substrate.Figure 9.21 (a) UV–vis spectra and color changing of TATF COF films. (b) CV ...
10 Chapter 10Figure 10.1 One example of fabrication and optical characteristics of thin‐f...Figure 10.2 (a) UV–visible reflectance spectrum of a polycrystalline sample ...Figure 10.3 (a) SEM photographs of porous polymeric microspheres: 50% (A), 1...Figure 10.4 (A) Cross‐sectional view of an R‐ECD cell. (B) Schematic represe...Figure 10.5 Schematic of ion diffusion paths in (a) PANI films and (b,c) PAN...Figure 10.6 (A) SEM and TEM images of PMMA nanoparticles (left) and PANI@PMM...Figure 10.7 Polyaniline/manganese dioxide hybrid films are prepared via one‐...Figure 10.8 (a) Various pixel designs with the corresponding printed images ...Figure 10.9 Full‐color plasmonic electrochromic electrodes. (a) Schematic di...Figure 10.10 (Au nanocrystal)@PANI nanostructures. (a) Schematic illustratin...Figure 10.11 (a) Schematic diagram and photograph of preparation of PANI/PSS...Figure 10.12 Preparation of DG‐structured conjugated polymer electrodes. (a)...Figure 10.13 (a) The procedure of WDENs preparation and (b) SEM image of TQ1...Figure 10.14 The scheme of the nanostructure PEDOT and the film processing [...
11 Chapter 11Figure 11.1 Road map of electroluminochromic materials.Figure 11.2 Working mechanisms of electroluminochromic materials. (a) Intrin...Figure 11.3 Typical structures of small molecular dyads.Figure 11.4 (a,b) Electroluminochromic performances of tetrazine dyads [20]....Figure 11.5 Redox‐active moiety and PH‐sensitive luminophores ELC system mec...Figure 11.6 Typical structures of electroactive molecular luminophores.Figure 11.7 (a) EC and EFC performance of M9 [25].(b) EFC performance of...Figure 11.8 (a) EFC performance of M13 [13].(b) EC and EFC performance o...Figure 11.9 Chemical structures of ELC transition metal complexes.Figure 11.10 ELC properties and mechanism of C5a–d in acetonitrile solution ...Figure 11.11 ELC properties and mechanism of C6a–d in acetonitrile solution ...Figure 11.12 (a) Chemical structures of ELC poly(p‐phenylene vinylene), (b) ...Figure 11.13 (a) Chemical structures of fluorene‐based poly(amide) and (b) c...Figure 11.14 Fluorescence switching of polyamide at different voltage (a) P3...Figure 11.15 Electrofluorochromic performance of (a) P7 [42].(b) P8 [43]...Figure 11.16 Photoluminescence spectra of P9c (a), P9a (b), and P9b (c) thin...Figure 11.17 Chemical structures of EFC poly(imides).Figure 11.18 EFC behaviors of P10a and bending performance of the single‐lay...Figure 11.19 EC behaviors (a) and EFC performance (b) of P12a [47].Figure 11.20 (a–d) Structure of TPA‐based ELC‐conjugated polymers and (b) EF...Figure 11.21 Chemical structure of fluorene‐based ELC‐conjugated polymers.Figure 11.22 (a) White ELC devices using P16b and P18b [48].(b) ELC perf...Figure 11.23 Chemical structure of ProDOT‐based ELC‐conjugated polymers.Figure 11.24 ELC performance of (a) P20 [58].(b) P21a [59].Figure 11.25 Chemical structure of carbazole‐based ELC‐conjugated polymers....Figure 11.26 ELC hybrid nanocomposite films (a) CdTe QDs and poly(methylene ...
12 Chapter 12Figure 12.1 PECD technology development.Figure 12.2 Parts of PECDs.Figure 12.3 Management of the solar spectrum [16].Figure 12.4 Schematic of DSSC [21].Figure 12.5 (a) Schematic of PVCC and (b) transient optical transmittance at...Figure 12.6 Optical transmittance change vs time of the PECD [14].Figure 12.7 Schematic diagram of the large‐scale ITO‐free PECSW based on ECD...Figure 12.8 (a) Schematic of combined‐type PECD and (b) the transmittance of...Figure 12.9 Pictures of the bleached and colored state of the PECD (a–d) and...Figure 12.10 Pictures of a DSSC‐driven EC smart window under illumination of...Figure 12.11 (a) Schematic of perovskite‐based PECD, (b) bleached state, and...Figure 12.12 Schematics of the device structure and working principle of the...Figure 12.13 Scheme of a bulk‐heterojunction organic device.Figure 12.14 (a) Schematic representation of device structure and (b) photog...Figure 12.15 The three common viologen redox states.Figure 12.16 Scheme of the PECD. (a) F‐doped SnO2 glass, (b) TiO2 layer cont...Figure 12.17 TX‐VIO molecular structure, time resolved fluorescence decays, ...Figure 12.18 Schematics of device structure and redox process [55].Figure 12.19 PEDOT‐F.Figure 12.20 Energy diagram and working principle of a dye‐sensitized solar ...Figure 12.21 Schematic design of the PECD and the chemical structure of PPro...Figure 12.22 The oxidation and reduction of ProDOT‐Et2.Figure 12.23 Some redox states of polyaniline, from the fully reduced (leuco...Figure 12.24 CV curves for WO3 film, sulfuric acid‐doped PANI film, and PANI...Figure 12.25 (a) Schematic diagram of PPy/Al device, (b) working mechanism f...Figure 12.26 Spectroelectrochemistry of PEDOT at different oxidation states ...Figure 12.27 ITO‐free device structure [94].
13 Chapter 13Figure 13.1 Road map of application of OEC technology development.Figure 13.2 Structure of electrochromic smart windows.Figure 13.3 The R2R production. (a) Schematic and detail. (b) Photograph of ...Figure 13.4 Electrical, optical, and mechanical properties of AgNF network. ...Figure 13.5 Fabrication and properties of AgNF ECSW. Structural schematic (a...Figure 13.6 The effect of auto‐dimming mirror.Figure 13.7 Reaction conditions for the preparation of latent pigment 3–4 st...Figure 13.8 Reflectivity spectra of a thin film of 3 adsorbed on a TLC silic...Figure 13.9 (a) Reflectivity spectra of a thin film of 4 on a TLC silica pla...Figure 13.10 Comparison between methylene blue (c,d) and poly(p‐xylylviologe...Figure 13.11 UV–vis spectra of methylene blue (a), poly(butylviologen dibrom...Figure 13.12 The schematic image of the self‐powered photoelectrochemical de...Figure 13.13 The color change of WO3 with an increase of PPi concentration....Figure 13.14 Schematic of the organic electrochromic timer for enzymatic ski...Figure 13.15 The color change of PEDOT:PSS when time goes by.Figure 13.16 Synthesis route of DTP‐alkoxy‐NH2 monomer.Figure 13.17 Electrochromic colors of P(DTP) films at various potentials and...Figure 13.18 Calibration curves for the detection of glucose (in a pH 7 buff...Figure 13.19 Synthetic procedure of the TTzFr.Figure 13.20 Optimization of the (a) cycle number; (b) enzyme amount on bios...Figure 13.21 Electrochromic biosensor and its operating principle. (a,b) Pho...Figure 13.22 Captures of the display 30 seconds after the addition of differ...Figure 13.23 Schematic diagram of the experimental steps involved in the stu...Figure 13.24 (a) Color‐mixing scheme and (b) resulting EC material thin film...Figure 13.25 Transmittance change (ΔT, %) (a) at 580 nm of the Fe–MEPE ECD a...Figure 13.26 (a) Color change between −3 and 3 V of Fe–MEPE ECD under flat c...Figure 13.27 (a) Schematic illustration of the device concept. A photosensor...Figure 13.28 The bending test of the device. (a) Demonstration of device ope...Figure 13.29 Illustration of the concept of a chameleon‐inspired e‐skin. Als...Figure 13.30 An interactive color‐changing and tactile‐sensing e‐skin. Seque...Figure 13.31 (a) The molecular structure of G1, G2, and G3 and (b–d) the app...Figure 13.32 Spectroelectrochemistry of PG1, PG2, and PG3 film on an ITO‐coa...Figure 13.33 (a) The appearance of PG3 and in a DCM or TOL solution. Images ...Figure 13.34 (a) The rear camera cannot be detected when it is not needed. (...Figure 13.35 The schematic images of the front and rear surfaces of the one‐...
14 Chapter 14Figure 14.1 Front view of motor vehicle rearview mirror. (a) Traditional fou...Figure 14.2 General device structure.Figure 14.3 The representative EC materials in Gentex.Figure 14.4 Multilayer rapid discoloration device.Figure 14.5 Compound structural formula.Figure 14.6 Device structure including white reflective layer.Figure 14.7 The representative EC materials in Ricoh.Figure 14.8 Canon's unique EC materials.Figure 14.9 Liquid crystal display screen with electrochromic film.Figure 14.10 Substrate isolated by pixel wall.Figure 14.11 Glasses‐free 3D grating.Figure 14.12 Glasses‐free 3D grating.Figure 14.13 (a) Electrochromic mother board. (b) Electrochromic unit.Figure 14.14 Electrochromic compound structure.Figure 14.15 Electrochromic compound structure.Figure 14.16 Repairable gel.Figure 14.17 Green electrochromic compounds.Figure 14.18 Black electrochromic compounds.Figure 14.19 Polymer formation process (n 1, n 2 , n 3, n 4 are integers between ...Figure 14.20 Polymerized monomer.Figure 14.21 YAPU's large‐sized thick EC lenses.
15 Chapter 15Figure 15.1 Working principle and structure of an OECD. (a) Two OEC material...Figure 15.2 (a) Chemical structure of DHPV2+2Cl−. (b) Schematic ar...Figure 15.3 (a) Fabrication procedure of the WO3/Ag NN/PEDOT:PSS transparent...Figure 15.4 Schematic illustrations of coating and printing techniques.