Читать книгу Все науки. №2, 2022. Международный научный журнал - Ибратжон Хатамович Алиев - Страница 6
ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
ПОДРОБНЫЙ АНАЛИЗ ПРОТОН-БОРОВОЙ РЕАКЦИИ С ВЫДЕЛЕНИЕМ ТРЁХ АЛЬФА-ЧАСТИЦ
ОглавлениеРуми Ринад Фуадович
Старший научный сотрудник лаборатории ускорительной техники при институте полупроводников и микроэлектроники при Национальном Университете Узбекистана
Лаборатория ускорительной техники при институте полупроводников и микроэлектроники при Национальном Университете Узбекистана, Узбекистан
Аннотация. Рассмотрены теоретические основы ядерная реакция и получения энергии из её осуществления с высокой эффективностью при генерации из выделяемых при этом 3 альфа-частиц. При этом важно указание использование для реализации самой реакции резонансного ускорителя частиц типа ЛЦУ-ЭПД-20.
Ключевые слова: ускоритель, ядерная реакция, энергия, элементарные частицы.
Annotation. The theoretical foundations of a nuclear reaction and obtaining energy from its implementation with high efficiency when generating 3 alpha particles released at the same time are considered. At the same time, it is important to specify the use of a resonant particle accelerator of the LCU-EPD-20 type for the implementation of the reaction itself.
Keywords: accelerator, nuclear reaction, energy, elementary particles.
Первая ядерная реакция представляется следующим образом (2.1).
Протон с энергией в 2,312691131 МэВ и массой в 1,00728 а. е. м., налетает на бор-11 с атомной массой в 11,00930517 а. е. м., с выделением трёх альфа-частицы массы, которых составляют 4,001506179 а. е. м.
Изначально, необходимо определить, какое количество энергии затратит протон, приближаясь к ядру бора-11, а именно высоту кулоновского барьера (2.3), определив радиус ядра бора-11 в (2.2).
Следовательно, нынешняя энергия протона, после затраты на кулоновский барьер, составляет 0,23 эВ. Важно заметить, что сама кинетическая энергия частицы подобрана так, чтобы после её прохода энергия оставалась минимальной, что привело бы к увеличению вероятности взаимодействия в самой ядерной реакции. Теперь, необходимо вычислить энергетический выход данной ядерной реакции, с указанными массами в (2.4).
Поскольку эта реакция экзо-энергетическая, то нет смысла вычислять для неё порог реакции, остаётся лишь записать пару энергетических уравнений (2.5—2.6) и затем вычислить энергии, приобретаемые альфа-частицами.
Из этих энергетических уравнений стало ясно, что кроме выхода реакции, добавляется и оставшаяся кинетическая энергия, благодаря чему общая энергия, распределяемая между частицами, составляет 11,24006887 МэВ из равенства (2.7). Теперь, для распределения этих энергий достаточно воспользоваться (2.8), в этом случае, хоть и рассматривается выход уже 3 частиц, они имеют один тип, по этой причине, энергия для них распределяется равномерно, как и импульс.
И наконец, остаётся определить сечение ядерной реакции и число взаимодействий. Изначально, необходимо вычислить длину волны налетающих протонов, для этого достаточно определить их импульс через (2.10), перед этим вычислив скорость в (2.9), а затем уже длину волны в (2.11).
Переходя уже к исчислению сечений, достаточно воспользоваться (2.12), но также необходимо использование коэффициента, о котором говорилось ранее, по этой причине применяется и (2.13), и только после вычисляется истинное сечение (2.14), для некоторых подсчётов, этот коэффициент становится равным единице, поэтому просто не указывается, но в данном случае, если подсчитать таким же образом.
Максимально возможное сечение составляет 20 кбн, в данном же случае меньшее сечение благодаря подобранной энергии в циклотроне. Теперь, когда сечение известно, для этой реакции, остаётся ввести число взаимодействий (2.18), перед этим вычислим число атомов на кубометр (2.15) и указав толщину пластины в 13 мкм, поскольку пробег протона (максимальное расстояние, на котором может пройти при определённой энергии) с энергией 1 МэВ составляет это значение.
А также необходимо определить в (2.16) начальное число бомбардирующих протонов, указав, что их общая сила тока 100 А, а время одного акта, который вытекает уже из параметров циклотрона, описываемый в предыдущих главах составляет 164,065 нс, что гораздо больше времени даже самой долгой реакции, откуда можно вычислить заряд, а из него уже и число протонов (2.17).
Это число всех частиц, прошедших сквозь пластину и не вошедших в реакцию, а для того, чтобы вычислить те, которые вошли в реакцию, достаточно определить разность в (2.19), а затем уже вычислить из них заряд, с учётом того, что выходит именно 3 альфа-частицы, следовательно, выходящий заряд в 3 раза превышает один выходящий заряд, вместе с этим учитывая, что каждая альфа-частицы несёт в себе по 2 элементарных заряда, то заряд увеличивается ещё в 2 раза (2.20) и силу тока (2.21).
Говоря же о силе тока, выводимой в данном соотношении, важно отметить, что здесь учитывается именно циклотронное время, без участия времени линейного ускорителя или инжектора, из-за чего может наблюдаться изменение или погрешности при реальном детектировании силы тока, но поскольку конечная энергия вычисляется не из силы тока, а из выходящего заряда, то в вычислениях энергий, никаких погрешностей не наблюдается и данное указание действует как для этой, так и для всех в последующем описанных шести ядерных реакциях.
И наконец, для полноты картины остаётся лишь определить выходящее кулоновское отталкивание, определив радиус альфа-частиц, поскольку они будут отталкиваться друг от друга, в (2.22), а уже в (2.23) и сам барьер.
Следовательно, вылетающая альфа-частица также приобретёт дополнительную энергию, и конечная энергия будет составлять 6.338789969 МэВ.
Итак, можно подвести итог, что в данной реакции, с анализом иных каналов будут образовываться протоны с энергией 2,312691131 МэВ и током 100 А, в ионизаторе и циклотроне за 164,065 нс, а затем они будут бомбардировать тонкую пластину бора-11, откуда будут вылетать альфа-частицы с током 576,4075638 А и энергиями 3,746689623 МэВ, а после выходящего кулоновского барьера с энергиями в 6,338789969 МэВ, также будут образовываться атомы углерода-12, благодаря которым температура пластины будет изменяться на 3,214 К.
Вылетевшие альфа-частицы будут направляться в генератор, который устроен либо по принципу МГД-генератора, либо он будет создавать магнитное поле, где альфа-частицы будут двигаться по винтовому пути, образуя некоторую индукцию, благодаря тому, что они имеют заряд.
А изменяя число витков можно изменять поток вектора магнитной индукции, образующуюся в этом движении, в результате этого изменения потока, его можно преобразовать в электричество, получая ЭДС индукции на внешней катушке.
В обоих случаях результат не изменится и выполняемая в данном случае работа за акт составит 599,4486355 Дж, а за секунду уже 3,653726484*109 Дж, а если перевести это значение в Вт*ч, то это получается 1 014 924,023 Вт*ч, что является довольно приличным указанием, момент с потребление для циклотрона определяется как 55,56389 кВт*ч, но более точные показатели рассчитываются в последующих исследованиях.
Библиографический список
1. Р. А. Сюняев. Физика космоса. Маленькая энциклопедия. Советсткая энциклопедия. Изд-во Наука. 1986.
2. Дж. Фейенберг. Из чего сделан мир? Атомы, Лептоны, Кварки и другие загадочные частицы. Изд-во Мир. 1981.
3. В. Голощапов. Физика космоса. Элементарные частицы материи. Супер. 2016.
4. В. А. Фок. Квантовая физика и строение материи. Изд-во URSS. 2009.
5. Дж. Глимм, А. Джаффе. Математические методы квантовой физики. Изд-во Наука. 2017.
6. И. В. Баргатин, Б. а. Гришанин, В. Н. Задков. Запутанные квантовые состояния атомных систем. Редакция им. Ломоносова. 2001.
7. Г. Кейн. Современная физика элементарных частиц. Изд-во Мир. 1990.