Читать книгу Все науки. №8, 2022. Международный научный журнал - Ибратжон Хатамович Алиев - Страница 4

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
СОВРЕМЕННЫХ ДОСТИЖЕНИЯХ ФИЗИКИ РЕЗОНАНСНЫХ УСКОРИТЕЛЬНЫХ УСТАНОВОК

Оглавление

УДК 621.039

Шарофутдинов Фаррух Муроджонович


Экономический руководитель OOO «Electron Laboratory»; Главный учёный секретарь Научной школы «Электрон» при OOO «Electron Laboratory»
OOO «Electron Laboratory», Научная школа «Электрон», Санкт-Петербург, Российская Федерация
Алиев Ибратжон Хатамович
Студент 2 курса факультета математики-информатики Ферганского государственного университета; Генеральный директор OOO «Electron Laboratory»; Президент Научной школы «Электрон» при OOO «ElectronLaboratory»


Ферганский государственный университет, Фергана, Узбекистан; OOO «ElectronLaboratory», Научная школа «Электрон», Маргилан, Узбекистан

Аннотация. Современные научные исследования прогрессивно развиваются, обещая наличие новых результатов. Одним из них является открытие и популяризация физики резонансных ядерных реакций в энергетическом плане. Особенностью данного раздела физики ядерных реакций является то, что возвращается вопрос об эффективности обычных экзо-энергетических ядерных реакций при проведении на ускорителях.

Ключевые слова: монохромотизация, резонансные ядерные реакции, ядерная физика, ускоритель заряженных частиц.

Annotation. Modern scientific research is progressing progressively, promising new results. One of them is the discovery and popularization of the physics of resonant nuclear reactions in the energy plan. The peculiarity of this section of nuclear reaction physics is that the question of the effectiveness of conventional exo-energetic nuclear reactions when carried out on accelerators returns.

Keywords: monochromatization, resonant nuclear reactions, nuclear physics, charged particle accelerator.

Как известно, ядерные реакции по своему характеру являются экзо- и эндо-энергетическими, что и делит их на категории по поглощению и выделению энергии при прохождении самой энергии, благодаря разности масс исходных и результирующих частиц. При этом если энергетические характеристики данных реакций сохранялись, то большим вопросом становится ситуация, связанная с количеством провзаимодействовавших частиц именно по указанному каналу реакций, ибо может пройти и любое другое взаимодействие, благодаря вероятностному характеру поведения подобных процессов.

Но как оказалось, повышение количества частиц, вошедших во взаимодействие, увеличивается при приближении их энергии к определённым значениям – резонансам, которые сегодня уже определены более точно. Но один аспект оставался довольно интересным и это вопрос о приближении энергии к некоторому пределу – кулоновскому барьеру ядра. Действительно по своим размерностям этот барьер не велик, более того наблюдается дополнительный разброс по энергиям за счёт ионизации, что, к счастью, уже можно более точно рассчитать, по этой причине, если учесть все идущие потери на ионизацию вещества мишени, а также кулоновский барьер, в результате частица будет обладать на ядерном промежутке достаточно малой энергией. Тут уместно вспомнить и о теории дуализма, согласно которому каждая частица является также волной, а поскольку энергия частицы в ядре становится минимальной, её длина волны начинает расти, создавая возможности для взаимодействия непосредственно с ядром, исключая иные вероятностные случаи, к которым можно отнести эффект туннелирования или рассеивание с упругим столкновением.

Казалось, что это мало действенная процедура, поскольку изначально нужно хотя бы попасть в сам кулоновский барьер, но за счёт достаточной плотности пучка, а также эффекту монохромотизатора, получился теоретический результат, намного увеличивающий эффективность всей реакции. Для сравнения, при одной лишь бор-протонной реакции с выделением 3 альфа-частиц на тонкой 13 микронной мишени, эффективное сечение ядерной реакции резко увеличивается и 99,999972% от всех частиц входят во взаимодействие даже при малых токах, для бериллий-протон-литиевой реакции с теми же альфа-частицами, этот показатель составляет почти 100%, при нужном обеспечении точности. Но есть и реакции с малой эффективностью, для примера реакций протон-литий-6 с двумя альфа-частицами имеет эффективность всего в 65,53%, но при этом имея большой энергетический выход.

Монохромотизатор же, который упоминался ранее является устройством, разделяющим в магнитном поле пучок по энергиям, после чего на его пути приходится нано-структурное вещество – углеродная сетка, между стенок трубок которого имеется тонкий слой из диэлектрического элемента или соединения. При этом вектор индукции такой установки варьируется на значении порядка 0,1 Тл и можно отметить, что при отклонении пучка наблюдается спектр с шириной в 0,327 мм, при этом толщина стенок измеряется в десятках нанометров, когда же диаметр одной внутренней трубки составляет 0,572 микрона, а внешний – 0,636 микрон. Потери при этом существуют и за счёт «удара» о стенки трубок расходуется до 12,5% от общего количества зарядов.

Но точность по энергиям в данном случае увеличивается, так если для ускорителя СОКОЛ-2 на энергиях в 2 МэВ точность составляла 5 кэВ, а для современных ускорителей чаще при энергии в 20 МэВ точность составляла 1 кэВ, то для ускорителя с монохромотизатором на той энергии в 20 МэВ можно добиться точности до 50 мэВ, что можно считать даже верхом недостижимого, но даже не смотря на это, как показывают работы это вполне достигаемые значения, но для экспериментальной проверки уже налажено сотрудничество со стороны компании-автора данного проекта OOO «Electron Laboratory» и Научной школы «Электрон» с «Научно-исследовательским институтом электро-физической аппаратуры» – «НИИЭФА им. Д. В. Ефремова», а также с такими организациями как Научно-исследовательский институт «Физики полупроводников и микроэлектроники» при Национальном Университете Узбекистана, Ферганский государственный университет, Ферганский политехнический институт, Государственное Унитарное Предприятие «Яшил-энергия» при ФерГУ, Ферганский филиал Ташкентского Университета Информационных Технологий и иными организациями.

В дальнейшем, при проведении удачной череды экспериментов большое внимание будет обращено для анализа энергетических характеристик и резонансов на лёгких, тяжёлых и сверхтяжёлых ядрах при специально создаваемой Научно-исследовательской лаборатории физики резонансных ядерных реакции при OOO «Electron Laboratory», в чём желаем им удачи на пути совершенствования знаний о микромире и его чудесах современного человеческого общества.

Использованная литература

1. Руми Р. Ф. Использование новых методов наноструктур позволяющие увеличивать монохромотичность пучка при ускорении. Все науки. – №7. Научная школа «Электрон», Издательские решения. Ридеро, 2022. – С. 15—25.

2. Алиев И. Х., Каримов Б. Х. Курс физики ускорителей заряженных частиц. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 203 с.

3. Алиев И. Х. Новые параметры по ядерным реакциям для осуществления на ускорителе заряженных частиц типа ЛЦУ-ЭПД-300. Проект «Электрон». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 498 с.

4. Алиев И. Х., Шарофутдинов Ф. М. Использование ускорителей и явлений столкновения элементарных частиц с энергией высокого порядка для генерации электрической энергии. Проект «Электрон». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2021. – 594 с.

5. Алиев И. Х. Об одной эвристической идее о возникновении новой энергетической технологии получения энергии из резонансных ядерных реакций. Все науки. – №1. Научная школа «Электрон», Издательские решения. Ридеро, 2022. – С. 13—18.

6. Каримов Б. Х. Общее представление ускорителя ЛЦУ-ЭПД-20. Все науки. – №1. Научная школа «Электрон», Издательские решения. Ридеро, 2022. – С. 18—23.

7. Жалолов Б. Р. Реализация и научные публикации по проекту «Электрон». Все науки. – №1. Научная школа «Электрон», Издательские решения. Ридеро, 2022. – С. 23—28.

Все науки. №8, 2022. Международный научный журнал

Подняться наверх