Читать книгу Все науки. №5, 2023. Международный научный журнал - Ибратжон Хатамович Алиев - Страница 2

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
КОНСТРУКЦИЯ И ОСОБЕННОСТИ ПРОЦЕССА СОЗДАНИЯ ГЕЛИЕВОГО ЛАЗЕРА

Оглавление

УДК 621.373.8

Алиев Ибратжон Хатамович


Студент 3 курса факультета математики-информатики Ферганского государственного университета


Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Изготовление большого количества устройств самого различного характера сводиться к возможности взаимодействия современной техники с самыми различными типами материалов, в том числе и тугоплавкими. По этой причине, с целью создания устройства трёхмерного принтера способного воздействовать на вольфрам, кварц и некоторые другие материалы, путём регулирования силы плавящего элемента и была разработана конструкция гелиевого ультрафиолетового лазера.

Ключевые слова: лазер, гелий, ультрафиолет, вольфрам, трёхмерных принтер, конструкция, устройство.

Annotation. The manufacture of a large number of devices of a very different nature is reduced to the possibility of interaction of modern technology with a variety of types of materials, including refractory ones. For this reason, in order to create a three-dimensional printer device capable of acting on tungsten, quartz and some other materials, by regulating the strength of the melting element, the design of a helium ultraviolet laser was developed.

Keywords: laser, helium, ultraviolet, tungsten, three-dimensional printer, design, device.

Устройство лазера представляет собой стеклянную колбу цилиндрической формы с установленным диаметром и внутренним подобным относительно радиуса делением. Толщина такой колбы выбрана специально, для решения проблемы разгерметизации конструкции. В такой колбе, во внешней части введён гелий, а также по обе стороны установлены катушки, одна из коих представляет катод прямого накала, а вторая – анод. Благодаря тому, что катод начинает нагреваться, то между ним и анодом начинает возникать плотность тока, определяемая по (1) и из которой можно вычислить от значения температуры кинетическую энергию молекул катода (2), а уже после и скорость молекул (3), откуда в свою очередь вычисляется из значения определённой плотности тока заряд (4).




Далее из, приведённых вычислений, можно определить и напряжение, то есть кинетическую энергию долетающих до анода зарядов, откуда проявляется их напряжение (5), а поскольку известно значение плотности тока в самом катоде (6), то в зависимости от соотношения этой плотности тока и плотности вылетающего заряда можно найти процент выхода зарядов из катода (7) или своего рода катодную эффективность.



После того, как заряды с установленной энергией, при заданном напряжении вылетают из катода, они начинают воздействовать на находящийся между электродами гелий, который начинает возбуждаться и переходить на следующий энергетический уровень и после спуска с него, что занимает микросекунды, начинает испускать фотоны ультрафиолетового света. Вокруг внешней части колбы находиться отражающая фольга, которая отражает все эти разнонаправленные лучи и сводит их к единой точке. К тому же зеркала или та же фольга находиться на концах сторон этой трубки, что ещё более увеличивает эффект.

Затем отражённые ультрафиолетовые лучи начинают двигаться в сторону центральной части, но эта центральная часть должна быть изготовлена из кварцевого стекла, который в отличие от обычного проводит ультрафиолет. А в центральной колбе также присутствует гелий с той же энергией возбуждения, что приводит к тому, что гелий поглощает налетевшие на него фотоны и выпускает в удвоенном количестве.

С одной стороны центральной части конструкции находиться также отражающее зеркало, а с другой – кварцевое стекло, которое и выпускает поток концентрированных ультрафиолетовых фотонов с большой энергией. Таким образов генерируя поток с энергией не менее 28—30 Вт, которую можно концентрировать в достаточно малых площадях используя для этого мощные линзы и воздействуя на необходимый объект. Для сравнения, при использовании линзы с возможностью увеличения в 5,5—6 тысяч раз и уменьшении площади пучка до 1 мкм, температура вольфрама достигает 4,5 тысяч градусов, что в разы больше температуры его плавления. Благодаря этому можно создать конструкцию подобного рода трёхмерного принтера, который с большой точностью будет воздействовать на материал, вызывая его плавление в определённой точке с точностью до микрометра и послойно вызывая формирование необходимой детали любого масштаба с достаточно большой прочностью!

Использованная литература

1. Баграмов, Р. Лазеры в стоматологии, челюстно-лицевой и реконструктивно-пластической хирургии / Р. Баграмов, М. Александров, Ю. Сергеев. – М.: Техносфера, 2010. – 608 c.

2. Бертолотти, М. История лазера. Научное издание / М. Бертолотти. – М.: Интеллект, 2015. – 336 c.

3. Богданов, А. Д. Гироскопы на лазерах / А. Д. Богданов. – М.: Воениздат, 1975. – 731 c.

4. Васильев, Г. М. Кинетические и транспортные процессы в молекулярных газовых лазерах / Г. М. Васильев, С. А. Жданок. – М.: Беларуская Навука, 2010. – 206 c.

5. Гамалея, Н. Ф. Лазеры в эксперименте и клинике / Н. Ф. Гамалея. – Л.: Медицина, 2013. – 232 c.

6. Застрогин, Ю. Ф. Контроль параметров движения с использованием лазеров. Методы и средства: моногр. / Ю. Ф. Застрогин. – Л.: Машиностроение, 1981. – 176 c.

7. Зуев, В. Е. Лазер-метеоролог / В. Е. Зуев. – М.: Гидрометеоиздат, 2001. – 180 c.

8. Индуцируемые лазером химические процессы. – М.: Мир, 1984. – 312 c.

9. Лазеро- и светолечение. Том 1. Сосудистые нарушения. Гиперпигментация. Рубцы. Кожные болезни. Эпиляция (+ DVD-ROM). – М.: Рид Элсивер, 2010. – 188 c.

10. Лазеро- и светолечение. Том 2. Омоложение кожи. Лазерная шлифовка. Лазерная терапия у пациентов с темной кожей. Лечение целлюлита (+ DVD-ROM). – М.: Рид Элсивер, 2010. – 152 c.

11. Лазеры в авиации. – М.: Воениздат, 1982. – 160 c.

12. Лазеры в эндоскопии / Н. Е. Чернеховская и др. – М.: МЕДпресс-информ, 2011. – 144 c.

13. Лазеры. – М.: Издательство иностранной литературы, 1996. – 472 c.

14. Мэйтленд, А. Введение в физику лазеров / А. Мэйтленд, М. Данн. – Москва: Мир, 1978. – 598 c.

15. Насретдинов, Алексей Вуайеризм и боевые лазеры / Алексей Насретдинов. – М.: Бослен, 2007. – 128 c.

16. Очкин, В. Н. Волноводные газовые лазеры / В. Н. Очкин. – М.: Знание, 1988. – 282 c.

Все науки. №5, 2023. Международный научный журнал

Подняться наверх