Читать книгу Математические головоломки профессора Стюарта - Иэн Стюарт - Страница 10
О единицах измерения
Как выиграть в лотерею?
ОглавлениеПожалуйста, обратите внимание на вопросительный знак в заголовке.
Чтобы выиграть джекпот в Национальной лотерее Великобритании (бездарно переименованной в Lotto), необходимо, чтобы шесть чисел от 1 до 49, выбранные вами заранее, совпали с числами, которые выберет лотерейный автомат в день розыгрыша. Существуют способы выиграть призы поменьше, но давайте сосредоточимся на максимальном результате. Шары вынимаются машиной в случайном порядке, но затем выстраиваются по возрастанию, чтобы участникам лотереи проще было определить, выиграли ли они что-нибудь. Поэтому если машина выберет следующие шары:
13 15 8 48 47 36,
то результат будет выдан в виде
8 13 15 36 47 48;
наименьшее число здесь, очевидно, равно 8, следующее – 13 и т. д.
Теория вероятностей говорит нам, что если любое число может выпасть с равной вероятностью (как и должно быть), то в пределах выбранного комплекта из шести чисел:
• наиболее вероятное наименьшее число равно 1;
• наиболее вероятное следующее по величине число равно 10;
• наиболее вероятное третье по величине число равно 20;
• наиболее вероятное четвертое по величине число равно 30;
• наиболее вероятное пятое по величине число равно 40;
• наиболее вероятное наибольшее число равно 49.
Все эти утверждения верны. Первое верно, потому что если в ряду чисел появляется 1, то она, естественно, становится наименьшей, что бы ни произошло далее. Однако в отношении числа 2 так уже нельзя сказать, потому что остается небольшая вероятность, что далее появится 1, которая и займет это место. Следовательно, вероятность того, что число 2 будет наименьшим после извлечения шести шаров, чуть меньше, чем для единицы.
Ну, хорошо, таковы математические факты. Поэтому на первый взгляд вы можете чуть-чуть увеличить свои шансы на выигрыш, если выберете числа
1 10 20 30 40 49,
поскольку каждое из них – наиболее вероятный вариант в данном интервале.
Верно ли сказанное? Ответ см. в главе "Загадки разгаданные".