Читать книгу Damaging Effects of Weapons and Ammunition - Igor A. Balagansky - Страница 21
I.3.2 Classification of Targets, Typical Efficiency Indicators
ОглавлениеTo assess the effectiveness of the shooting, the whole variety of targets can be represented by three typical kinds [2].
A single target is an elementary, usually small target that provides certain functions (aircraft, ship, tank). The task of firing is its damage. As an indicator of efficiency, the probability of damage W = P(A) is often used, where A – the damage of the target.
A group target is a target consisting of several single targets, such as the position of an anti‐aircraft missile system, a tank convoy, or a group of aircraft or ships united by a common combat mission. When firing, it is necessary to damage the group as a whole and thus prevent it from fulfilling its combat mission. According to the experience of World War II, the enemy's refusal to continue the attack is directly related to the number of losses. Loss of 50–60% tanks means refusing to continue the attack with the probability of 0.90–0.95. The average number of damaged targets in the group Md = M[Kd], where the random value of Kd is the number of damaged targets, is usually taken as an indicator of the shooting efficiency. In some cases, a more specific task is set before a group target is fired, for example, to disable the enemy's antiaircraft missile system. Damaging the position of the antiaircraft missile system may mean either damaging all missile launchers or damaging the target illumination radar. Then the indicator of the effectiveness of firing on a group target will be the probability of completing the task A: W = P(A).
An area target is a target consisting of a set of objects distributed within a certain area in an obscure way, for example an accumulation of personnel and battle equipment. Typical for an area target is that it is not the individual objects that are targeted, but the entire area as a whole. As an efficiency indicator, the expected value of the portion of the damaging area M = M[U] is used, where U = Sd/St is the ratio of the damaging area to the full target area.