Читать книгу Понятная физика - Игорь Джавадов - Страница 11

ЧАСТЬ I
Раздел I. Механика
Глава 1. Движение частиц
§ 9. Об отрицательных величинах в физике.

Оглавление

При выводе закона сохранения импульса мы допустили, что скорость тела может быть отрицательной. Вообще говоря, в природе отрицательных величин не бывает, их придумали математики. С другой стороны, такие приёмы упрощают решение задач. Многие отрицательные величины появились в физике в результате договорённостей. Например, согласно Цельсию, температуру ниже точки замерзания чистой воды договорились считать отрицательной. Это удобно в быту и технике. А согласно Кельвину, отрицательной температуры вообще не бывает, температура любой среды может быть только положительной. Это удобно в теоретической физике. Рассмотрим, как в физике появились отрицательные скорости.

Предположим, расстояние от перекрёстка до школы 200 м направо, но школьник повернул налево и прошёл 200 м до киоска с мороженным. Результат отрицательный в плане посещаемости школы. Значит, можно записать, что налево школьник прошел минус 200 м. Если до киоска школьник шёл 200 секунд, значит, его средняя скорость равна -1 м/с. Мы понимаем, что со школьником ничего не случилось, пусть он и шел с отрицательной скоростью. Просто после того, как мы договорились считать направление «налево» отрицательным, любой путь «налево» будет иметь знак минус. При этом путь направо будет иметь знак плюс. Этот метод, который называется метод координат (или векторный) придумал математик Декарт ещё в XVII веке, а Ньютон использовал его в своей механике.

Часто говорят, путь, скорость, сила – это векторные величины, потому что результат движения зависит от направления (вектор – это и есть направление). Но мы должны понимать, что природные величины существуют независимо от нашей воли, а выбор положительного направления есть результат соглашения, он существует только на бумаге. Возьмём, скажем, время или температуру. Эти природные величины явно имеют выделенные направления – от прошлого к будущему, или от холода к теплу. Но математики наотрез отказываются признавать их векторами и понятно почему. В математике таких ограничений полным-полно. Собственно, математика это и есть игра с числами, в которую можно играть в одиночку и самому устанавливать правила игры. К сожалению, у физиков нет возможности договориться с Природой и скачивать энергию ниоткуда. В этом вся разница. Разумеется, польза математики велика, мы будем её использовать. Но только как средство. А целью для нас является поиск новых источников энергии. Но вернёмся к закону сохранения полного (суммарного) импульса, которое с учетом знаков имеет вид: р1 – р2 = 0 (9.1). Перепишем (9.1) в виде: m1v1 – m2v2 = 0 (9.2). Если t – время взаимодействия двух тел (например, время прохождения ядра внутри пушки), то разделив (9.2) на t, получаем: m1v1/t

= m2v2/t, или m1a1 = m2a2. С учетом (4.8) получаем:

F1 = F2 (9.3). Уравнение (9.3) принято называть третьим законом Ньютона. Так как он получен из закона сохранения импульса, его следует считать независимым от второго закона Ньютона. Это справедливо, так как второй закон был выведен из закона сохранения энергии. Законы Ньютона составляют основу классической механики.

Понятная физика

Подняться наверх