Читать книгу Neonatal Haematology - Barbara J. Bain, Irene Roberts - Страница 43

References

Оглавление

1 1 Huyhn A, Dommergues M, Izac B, Croisille L, Katz W, Vainchenker W and Coulombel L (1995) Characterization of hematopoietic progenitors from human yolk sacs and embryos. Blood, 86, 4474–4485.

2 2 Tavian M, Cortes F, Charbord P, Labastie M‐C and Péault B (1999) Emergence of the haematopoietic system in the human embryo and foetus. Haematologica, 84 (Suppl EHA‐4), 1–3.

3 3 Palis J (2016) Hematopoietic stem cell‐independent hematopoiesis: emergence of erythroid, megakaryocytic, and myeloid potential in the mammalian embryo. FEBS Lett, 590, 3965–3974.

4 4 de Bruijn MF, Speck NA, Peeters MC and Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J, 19, 2465–2474.

5 5 Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML and Medvinsky A (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta‐gonad‐mesonephros region. J Exp Med, 208, 2417–2427.

6 6 Ivanovs A, Rybtsov S, Anderson RA, Turner ML and Medvinsky A (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Reports, 2, 449–456.

7 7 Marshall CJ and Thrasher AJ (2001) The embryonic origins of human haematopoiesis. Br J Haematol, 112, 838–850.

8 8 O’Byrne S, Elliott N, Rice S, Buck G, Fordham N, Crump NT et al. (2019) Discovery of a CD10 negative B‐progenitor in human fetal life identifies unique ontogeny‐related developmental programs. Blood, 134, 1059–1071.

9 9 Popescu D‐M, Botting RA, Stephenson E, Green K, Jardine L, Acres M et al. (2019) Decoding the development of the blood and immune systems during human fetal liver haematopoiesis. Nature, 574, 365–371.

10 10 Migliaccio, AG., Migliaccio AR, Petti S, Mavilio F, Russo G, Lazzaro D et al. (1986) Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac–liver transition. J Clin Invest, 78, 51–60.

11 11 Tavian M, Hallais MF and Peault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre‐liver human embryo. Development, 126, 793–803.

12 12 Charbord P, Tavian M, Humeau L and Peault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood, 87, 4109–4119.

13 13 Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N et al. (2012) Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell, 10, 273–283.

14 14 Yuan J, Nguyen CK, Liu X, Kanellopoulou C and Muljo SA (2012) Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal‐like lymphopoiesis. Science, 335, 1195–1200.

15 15 Copley MR, Babovic S, Benz C, Knapp DJHF, Beer PA, Kent DG et al. (2013) The Lin28b‐let‐7‐Hmga2 axis determines the higher self‐renewal potential of fetal haematopoietic stem cells. Nat Cell Biol, 15, 916–925.

16 16 Jardine L, Webb S, Goh I, Quiroga Londoño M, Reynolds G, Mather M et al. (2021) Intrinsic and extrinsic regulation of human fetal bone marrow haematopoiesis and perturbations in Down syndrome. Nature, 598, 327–331.

17 17 Roy A, Wang G, Iskander D, O’Byrne S, Elliott N, O’Sullivan J et al. (2021) Developmental stage‐ and site‐specific transitions in lineage specification and gene regulatory networks in human hematopoietic stem and progenitor cells. Cell Rep, 36, 109698.

18 18 Bowie MB, Kent DG, Dykstra B, McKnight KD, McCaffrey L, Hoodless PA and Eaves CJ (2007) Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci U S A, 104, 5878–5882.

19 19 Ranzoni AM, Tangherloni A, Berest I, Riva SG, Myers B, Strzelecka PM et al. (2021) Integrative single‐cell RNA‐Seq and ATAC‐Seq analysis of human developmental hematopoiesis. Cell Stem Cell, 28, 472–487.e7.

20 20 Mascarenhas MI, Parker A, Dzierzak E and Ottersbach K (2009) Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood, 114, 4645–4653.

21 21 Chou S, Flygare J and Lodish HF (2013) Fetal hepatic progenitors support long‐term expansion of hematopoietic stem cells. Exp Hematol, 41, 479–490.

22 22 Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y and Orkin SH (2004) Gfi‐1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature, 431, 1002–1007.

23 23 Hock H, Meade E, Medeiros S, Schindler JW, Valk PJ, Fujiwara Y and Orkin SH (2004) Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev, 18, 2336–2341.

24 24 Kim I, Saunders TL and Morrison SJ (2007) Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell, 130, 470–483.

25 25 Mochizuki‐Kashio M, Mishima Y, Miyagi S, Negishi, Saraya A, Konuma T et al. (2011) Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood, 118, 6553–6561.

26 26 Pietras EM and Passegue E (2013) Linking HSCs to their youth. Nat Cell Biol, 15, 885–887.

27 27 Rice S, Jackson T, Crump NT, Fordham N, Elliott N, O’Byrne S et al. (2021) A human fetal liver‐derived infant MLL‐AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nat Commun, 12, 6905.

28 28 Böiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J et al. (2018) A human IPS model implicates embryonic B‐myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia‐associated ETV6‐RUNX1. Dev Cell, 44, 362–377.e7.

29 29 Jackson TR, Ling R and Roy A (2021) The origin of B‐cells: human fetal B cell development and implications for the pathogenesis of childhood acute lymphoblastic leukemia. Front Immunol, 12, 637975.

30 30 Yan H, Hale J, Jaffray J, Li J, Wang Y, Huang Y et al. (2018) Developmental differences between neonatal and adult human erythropoiesis. Am J Hematol, 93, 494–503.

31 31 Dame C, Fahnenstich H, Freitag P, Hofmann D, Abdul‐Nour T, Bartmann P and Fandray J (1998) Erythropoietin mRNA expression in human and neonatal tissue. Blood, 92, 3218–3225.

32 32 Teramo KA, Klemetti MM and Widness JA (2018) Robust increases in Hb by the hypoxic fetus is a response to protect the brain and other organs. Pediatr Res, 84, 807–812.

33 33 Tojo Y, Sekine H, Hirano I, Pan X, Souma T, Tsujita T et al. (2015) Hypoxia signaling cascade for erythropoietin production in hepatocytes. Mol Cell Biol, 35, 2658–2672.

34 34 Watts TL and Roberts IAG (1999) Haematological abnormalities in the growth‐restricted infant. Semin Neonatol, 4, 41–54.

35 35 Brugnara C and Platt OS (2009) The neonatal erythrocyte and its disorders. In: Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher DE and Lux SE (eds), Nathan and Oski’s Hematology of Infancy and Childhood, 7th edn. WB Saunders, Philadelphia, pp. 21–66.

36 36 Ohls RK (2002) Erythropoietin in extremely low birthweight infants: blood in versus blood out. J Pediatr, 141, 3–6.

37 37 Bain BJ (2020) Haemoglobinopathy Diagnosis, 3rd edn. Wiley Blackwell, Oxford, pp. 2–4.

38 38 King AJ and Higgs DR (2018) Potential new approaches to the management of the Hb Bart’s hydrops fetalis syndrome: the most severe form of α‐thalassemia. Hematology Am Soc Hematol Educ Program 2018, 2018, 353–360.

39 39 Bard H (1975) The postnatal decline in HbF synthesis in normal full‐time infants. J Clin Invest, 55, 395–398.

40 40 Phillips HM, Holland BM, Jones JG, Abdel‐Moiz AL, Turner TL and Wardrop CA (1988) Definitive estimate of rate of hemoglobin switching: measurement of percent hemoglobin F in neonatal reticulocytes. Pediatr Res, 23, 595–597.

41 41 Vinjamur DS, Bauer DE, Orkin SH (2018) Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol, 180, 630–643.

42 42 Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK et al. (2020) CRISPR‐Cas9 gene editing for sickle cell disease and β‐thalassemia. N Engl J Med, 384, 252–260.

43 43 Kuruvilla DJ, Widness JA, Nalbant D, Schmidt RL, Mock DM, An G and Veng‐Pedersen P (2017) Estimation of adult and neonatal RBC lifespans in anemic neonates using RBCs labeled at several discrete biotin densities. Pediatr Res, 81, 905–910.

44 44 Böhler T, Leo A, Stadler A and Linderkamp O (1992) Mechanical fragility of erythrocyte membrane in neonates and adults. Pediatr Res, 32, 92–96.

45 45 Ruef P and Linderkamp O (1999) Deformability and geometry of neonatal erythrocytes with irregular shapes. Pediatr Res, 45, 114–119.

46 46 Frosali S, Di Simplicio P, Perrone S, Di Guiseppe D, Longini M, Tanganelli D and Buonocore G (2004) Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth. Biol Neonate, 85, 188–194.

47 47 Siddappa AM, Rao R, Long JD, Widness JA and Georgieff MK (2007) The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology, 92, 73–82.

48 48 Lorenz L, Peter A, Poets CF and Franz AR (2013) A review of cord blood concentrations of iron status parameters to define reference ranges for preterm infants. Neonatology, 104, 194–202.

49 49 Rao R and Georgieff MK (2002) Perinatal aspects of iron metabolism. Acta Paediatr Suppl, 91, 124–129.

50 50 Niklasson A, Engstrom E, Hard AL, Wikland KA and Hellstrom A (2003) Growth in very preterm children: a longitudinal study. Pediatr Res, 54, 899–905.

51 51 Widness JA, Madan A, Grindeanu LA, Zimmerman MB, Wong DK and Stevenson DK (2005) Reduction in red blood cell transfusions among preterm infants: results of a randomized trial with an in‐line blood gas and chemistry monitor. Pediatrics, 115, 1299–1306.

52 52 McCarthy EK, Dempsey EM and Kiely ME (2019) Iron supplementation in preterm and low‐birth‐weight infants: a systematic review of intervention studies. Nutr Rev, 77, 865–877.

53 53 Mills RJ and Davies MW (2012) Enteral iron supplementation in preterm and low birth weight infants. Cochrane Database Syst Rev, CD005095.

54 54 Domellöf M (2017) Meeting the iron needs of low and very low birth weight infants. Ann Nutr Metab, 71 (Suppl 3), 16–23.

55 55 Bahr TM, Ward DM, Jia X, Ohls RK, German KR, and Christensen RD (2021) Is the erythropoietin‐erythroferrone‐hepcidin axis intact in human neonates? Blood Cells Mol Dis, 88, 102536.

56 56 German KR, Comstock BA, Parikh P, Whittington D, Maycock DE, Heagerty PJ et al. (2022) Do extremely low gestational age neonates regulate iron absorption via hepcidin? J Pediatr, 241, 62–67.e1.

57 57 Nemeth E and Ganz T (2021) Hepcidin‐ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci, 22, 6493.

58 58 Lorenz L, Herbst J, Engel C, Peter A, Abele H, Poets CF et al. (2014) Gestational age‐specific reference ranges of hepcidin in cord blood. Neonatology, 106, 133–139.

59 59 Yapakci E, Ecevit A, Goekmen Z, Tarcan A and Ozbek N (2009) Erythrocyte transfusions and serum prohepcidin levels in premature newborns with anemia of prematurity. J Pediatr Hematol Oncol, 31, 840–842.

60 60 Wu TW, Tabangin M, Kusano R, Ma Y, Ridsdale R and Akinbi H (2013) The utility of serum hepcidin as a biomarker for late‐onset neonatal sepsis. J Pediatr, 162, 67–71.

61 61 Lorenz L, Mueller KF, Poets CF, Peter A, Olbina G, Westerman M et al. (2015) Short‐term effects of blood transfusions on hepcidin in preterm infants. Neonatology, 108, 205–210.

62 62 Lenhartova N, Ochiai M, Sawano T, Yasuoka K, Fujiyoshi J, Inoue H and Ohga S (2022) Serum erythroferrone levels during the first month of life in premature infants. J Perinatol, 42, 97–102.

63 63 Christensen R, Henry E, Jopling J and Wiedmeier S (2009) The CBC: reference ranges for neonates. Semin Perinatol, 33, 3–11.

64 64 Schmutz N, Henry E, Jopling J and Christensen RD (2008) Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisited. J Perinatol, 28, 275–281.

65 65 Christensen RD, Jensen J, Maheshwari A and Henry E (2010) Reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period defined from over 63 000 records in a multihospital health‐care system. J Perinatol, 30, 540–545.

66 66 Christensen RD, Henry E, Andres RL and Bennett ST (2011) Reference ranges for blood concentrations of nucleated red blood cells in neonates. Neonatology, 99, 289–294.

67 67 Christensen RD, Baer VL, Gordon PV, Henry E, Whitaker C, Andres RL and Bennett ST (2012) Reference ranges for lymphocyte counts of neonates: associations between abnormal counts and outcomes. Pediatrics, 129, e1165–e1172.

68 68 Roberts I, Alford K, Hall G, Juban G, Richmond H, Norton A et al.; Oxford‐Imperial Down Syndrome Cohort Study Group (2013) GATA1‐mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood, 122, 3908–3917.

69 69 Jopling J, Henry E, Wiedmeier SE and Christensen RD (2009) Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics, 123, e333–e337.

70 70 Alur P, Devapatla SS, Super DM, Danish E, Stern T, Inagandla R and Moore JJ (2000) Impact of race and gestational age on red blood cell indices in very low birth weight infants. J Pediatr, 106, 306–310.

71 71 Bahr TM, Christensen TR, Henry E, Wilkes J, Ohls RK, Bennett ST et al. (2021) Neonatal reference intervals for the complete blood count parameters MicroR and HYPO‐He: sensitivity beyond the red cell indices for identifying microcytic and hypochromic disorders. J Pediatr, 239, 95–100.e2.

72 72 Warwood TL, Ohls RK, Wiedmeier SE, Lambert DK, Jones C, Scoffield SH et al. (2005) Single‐dose darbepoetin administration to anemic preterm neonates. J Perinatol, 25, 725–730.

73 73 Christensen RD, Henry E, Bennett ST and Yaish HM (2016) Reference intervals for reticulocyte parameters of infants during their first 90 days after birth. J Perinatol, 36, 61–66.

74 74 Sottiaux J, Favresse J, Chevalier C, Chatelain B, Hugues J and Mullier F (2020) Evaluation of a hereditary spherocytosis screening algorithm by automated blood count using reticulocytes and erythrocytic parameters on the Sysmex XN‐series. Int J Lab Hematol, 42, e88–e91.

75 75 Rolfo A, Maconi M, Cardaropoli S, Biolcati M, Danise P and Todros T (2007) Nucleated red blood cells in term fetuses: reference values using an automated analyzer. Neonatology, 92, 205–208.

76 76 Green DW, Hendon B and Mimouni FB (1995) Nucleated erythrocytes and intraventricular hemorrhage in preterm neonates. Pediatrics, 96, 475–478.

77 77 Buonocore G, Perrone S, Gioia D, Gatti MG, Massafra C, Agosta R and Bracci R (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol, 181, 1500–1505.

78 78 Zipursky, A (2003) Transient leukaemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol, 120, 930–938.

79 79 Linderkamp O, Nelle M, Kraus M and Zilow EP (1992) The effect of early and late cord clamping on blood viscosity and other hemorheological parameters in full‐term infants. Acta Paediatr, 81, 745–750.

80 80 Kiserud T (2004) The fetal circulation. Prenat Diagn, 24, 1049–1059.

81 81 Cassady G (1966) Plasma volume studies in low birth weight infants. Pediatrics, 38, 1020–1027.

82 82 Bauer K, Linderkamp O and Versmold HT (1993) Systolic blood pressure and blood volume in preterm infants. Arch Dis Child, 69, 521–522.

83 83 Pepper MR and Black MM (2011) B12 in fetal development. Semin Cell Dev Biol, 22, 619–623.

84 84 Hinton CF, Ojodu JA, Fernhoff PM, Rasmussen SA, Scanlon KS and Hannon WH (2010) Maternal and neonatal vitamin B12 deficiency detected through expanded newborn screening – United States, 2003–2007. J Pediatr, 157, 162–163.

85 85 Scolamiero E, Villani GR, Ingenito L, Pecce R, Albano L, Caterino M et al. (2014) Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem, 47, 312–317.

86 86 Reinson K, Kuennapas K, Kriisa A, Vals MA, Muru K and Ounap K (2018) High incidence of low vitamin B12 levels in Estonian newborns. Mol Genet Metab Rep, 15, 1–5.

87 87 Muetze U, Walter M, Keller M, Gramer G, Garbade SF, Gleich F et al. (2021) Health outcomes of infants with vitamin B12 deficiency identified by newborn screening and early treated. J Pediatr, 235, 42–48.

88 88 Higginbottom MC, Sweetman L and Nyhan WL (1978) A syndrome of methylmalonic aciduria, homocystinuria, megaloblastic anemia and neurologic abnormalities in a vitamin B12‐deficient breast‐fed infant of a strict vegetarian. N Engl J Med, 299, 317–323.

89 89 Wighton MC, Manson JI, Robertson E and Chapman E (1979) Brain damage in infancy and dietary vitamin B12 deficiency. Med J Aust, 2, 1–3.

90 90 Gramer G, Fang‐Hoffmann J, Feyh P, Klinke G, Monostori P, Mutze U et al. (2020) Newborn screening for vitamin B12‐deficiency in Germany–strategies, results, and public health implications. J Pediatr, 216, 165–172.

91 91 Oliver C, Watson C, Crowley E, Gilroy M, Page D, Weber K et al. (2020) Vitamin and Mineral Supplementation Practices in Preterm Infants: A Survey of Australian and New Zealand Neonatal Intensive and Special Care Units. Nutrients, 12, 51.

92 92 Jyothi S, Misra I, Morris G, Benton A, Griffin D and Allen S (2007) Red cell folate and plasma homocysteine in preterm infants. Neonatology, 92, 264–268.

93 93 Forestier F, Daffos F and Galacteros F (1986) Haematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res, 20, 342–346.

94 94 Campagnoli C, Fisk N, Overton T, Bennett P, Watts T and Roberts I (2000). Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood95, 1967–1972.

95 95 Lawrence SM, Corriden R and Nizet V (2017) Age‐appropriate functions and dysfunctions of the neonatal neutrophil. Front Pediatr, 5, 23.

96 96 Raymond SL, Stortz JA, Mira JC, Larson SD, Wynn JL and Moldawer LL (2017) Immunological defects in neonatal sepsis and potential therapeutic approaches. Front Pediatr, 5, 14.

97 97 Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol, 7, 379–390.

98 98 Koenig JM and Christensen RD (1989) Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med, 321, 557–562.

99 99 Ohls RK, Li Y, Abdel‐Mageed A, Buchanan Jr G, Mandell L and Christensen RD (1995) Neutrophil pool sizes and granulocyte colony stimulating factor production in human mid‐trimester fetuses. Pediatr Res, 37, 806–811.

100 100 Christensen RD, Calhoun DA and Rimsza LM (2000) A practical approach to evaluating and treating neutropenia in the neonatal intensive care unit. Clin Perinatol, 27, 577–601.

101 101 Millar DS, Davis LR, Rodeck CH, Nicolaides KH and Mibashan RS (1985) Normal blood cell values in the early mid‐trimester fetus. Prenat Diagn, 5, 367–373.

102 102 Filias A, Theodorou GL, Mouzopoulou S, Varvarigou AA, Mantagos S and Karakantza M (2011) Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatr, 11, 29.

103 103 Tsafaras GT, Ntontsi P and Xanthou G (2020) Advantages and limitations of the neonatal immune system. Front Pediatr, 8, 5.

104 104 Torok C, Lundahl J, Hed J and Lagercrantz H (1993) Diversity in regulation of adhesion molecules (Mac‐1 and L‐selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child, 68, 561–565.

105 105 Angelone DF, Wessels MR, Coughlin M, Suter EE, Valentini P, Kalish LA et al. (2006) Innate immunity of the human newborn is polarized toward a high ratio of IL‐6/TNF‐α production in vitro and in vivo. Pediatr Res, 60, 205–209.

106 106 Tatad AM, Nesin M, Peoples J, Cheung S, Lin H, Sison C et al. (2008) Cytokine expression in response to bacterial antigens in preterm and term infant cord blood monocytes. Neonatology, 94, 8–15.

107 107 Strunk T, Prosser A, Levy O, Philbin V, Simmer K, Doherty D et al. (2012) Responsiveness of human monocytes to the commensal bacterium Staphylococcus epidermidis develops late in gestation. Pediatr Res, 72, 10–18.

108 108 Li YP, Yu SL, Huang ZJ, Huang J, Pan J, Feng X et al. (2015) An impaired inflammatory cytokine response to gram‐negative LPS in human neonates is associated with the defective TLR‐mediated signaling pathway. J Clin Immunol, 35, 218–226.

109 109 Angelidou A, Diray‐Arce J, Conti M‐G, Netea MG, Blok BA, Liu M et al. (2021) Human newborn monocytes demonstrate distinct BCG‐induced primary and trained innate cytokine production and metabolic activation in vitro. Front Immunol, 12, 674334.

110 110 Hann IM (1991) Development of blood in the fetus. In: Hann IM, Gibson BES and Letsky E (eds), Fetal and Neonatal Haematology. Bailliere Tindall, London, pp. 1–28.

111 111 Roy A, Cowan G, Mead AJ, Filippi S, Bohn G, Chaidos A et al. (2012) Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc Natl Acad Sci U S A, 109, 17579–17584.

112 112 Roy A, Bystry V, Bohn G, Goudevenou K, Reigl T, Papaioannou M et al. (2017) High resolution IgH repertoire analysis reveals fetal liver as the likely origin of life‐long, innate B lymphopoiesis in humans. Clin Immunol, 183, 8–16.

113 113 Montecino‐Rodriguez E and Dorshkind K (2012) B‐1 B cell development in the fetus and adult. Immunity, 36, 13–21.

114 114 Bueno C, Van Roon EHJ, Muñoz‐López A, Sanjuan‐Pla A, Juan M, Navarro A et al. (2016) Immunophenotypic analysis and quantification of B‐1 and B‐2 B cells during human fetal hematopoietic development. Leukemia, 30, 1603–1606.

115 115 Haynes BF, Martin ME, Kay HH and Kurtzberg J (1988) Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med, 168, 1061–1080.

116 116 Cupedo T, Nagasawa M, Weijer K, Blom B and Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol, 35, 383–390.

117 117 Michaelsson J, Mold JE, McCune JM and Nixon DF (2006) Regulation of T cell responses in the developing human fetus. J Immunol, 176, 5741–5748.

118 118 Pahal G, Jauniaux E, Kinnon C, Thrasher AJ and Rodeck CH (2000) Normal development of human fetal hematopoiesis between eight and seventeen weeks’ gestation. Am J Obstet Gynecol, 183, 1029–1034.

119 119 Kumar BV, Connors T and Farber DL (2018) Human T cell development, localization, and function throughout life. Immunity, 48, 202–213.

120 120 Krause PJ, Herson VC, Boutin‐Lebowitz J, Eisenfeld L, Block C, LoBello T et al. (1986) Polymorphonuclear leukocyte adherence and chemotaxis in stressed and healthy neonates. Pediatr Res, 20, 296–300.

121 121 Anderson DC, Rothlein R, Marlin SD, Krater SS AND Smith CW (1990) Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac‐1 (CD11b/CD18)‐dependent adherence reactions. Blood, 76, 2613–2621.

122 122 Nussbaum C, Gloning A, Pruenster M, Frommhold D, Bierschenk S, Genzel‐Boroviczény O et al. (2013) Neutrophil and endothelial adhesive function during human fetal ontogeny. J Leukoc Biol, 93, 175–184.

123 123 Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML et al. (2009) Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood, 113, 6419–6427.

124 124 Lipp P, Ruhnau J, Lange A, Vogelgesang A, Dressel A and Heckmann M (2016) Less neutrophil extracellular trap formation in term newborns than in adults. Neonatology, 111, 182–188.

125 125 Yost CC, Schwertz H, Cody MJ, Wallace JA, Campbell RA, Vieira‐de‐Abreu A et al. (2016) Neonatal NET‐inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J Clin Invest, 126, 3783–3798.

126 126 Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol, 18, 134–147.

127 127 He Y‐M, Li X, Perego M, Nefedova Y, Kossenov AV, Jensen EA et al. (2018) Transitory presence of myeloid‐derived suppressor cells in neonates is critical for control of inflammation. Nat Med, 24, 224–231.

128 128 Weber R and Umansky V (2019) Fighting infant infections with myeloid‐derived suppressor cells. J Clin Invest, 129, 4080–4082.

129 129 Källman J, Schollin J, Schalèn C, Erlandsson A and Kihlström E (1998) Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed, 78, F46–F50.

130 130 Forestier F, Daffos F, Catherine N, Renard M and Andreux JP (1991) Developmental hematopoiesis in normal human fetal blood. Blood, 77, 2360–2363.

131 131 Hohlfeld P, Forestier F, Kaplan C, Tissot JD and Daffos F (1994) Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood, 84, 1851–1856.

132 132 Ferrer‐Marin F, Liu ZJ, Gutti R and Sola‐Visner M (2010) Neonatal thrombocytopenia and megakaryocytopoiesis. Semin Hematol, 47, 281–288.

133 133 Liu ZJ, Italiano J, Ferrer‐Marin F, Gutti R, Bailey M, Poterjoy B et al. (2011) Developmental differences in megakaryocytopoiesis are associated with up‐regulated TPO signalling through mTOR and elevated GATA‐1 levels in neonatal megakaryocytes. Blood, 117, 4106–4117.

134 134 Wolber E‐M, Bame C, Fahnenstich H, Hofmann D, Bartmann P, Jelkmann W and Fandrey J (1999) Expression of the thrombopoietin gene in human fetal and neonatal tissues. Blood, 94, 97–105.

135 135 Walka MM, Sonntag J, Dudenhausen JW and Obladen M (1999) Thrombopoietin concentration in umbilical cord blood of healthy term newborns is higher than in adult controls. Biol Neonate, 75, 54–58.

136 136 Murray NA, Watts TL, and Roberts IAG (1998) Endogenous thrombopoietin levels and effect of recombinant human thrombopoietin on megakaryocyte precursors in term and preterm babies. Pediatr Res, 43, 148–151.

137 137 Sola MC, Calhoun DA, Hutson AD and Christensen RD (1999) Plasma thrombopoietin concentrations in thrombocytopenic and non‐thrombocytopenic patients in a neonatal intensive care unit. Br J Haematol, 104, 90–92.

138 138 Hegyi E, Nakazawa M, Debili N, Navarro S, Katz A, Breton‐Gorius J and Vainchenker W (1991) Developmental changes in human megakaryocyte ploidy. Exp Hematol, 19, 87–94.

139 139 Sola‐Visner M (2012) Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impacts on therapies. Hematology Am Soc Hematol Educ Program, 2012, 506–511.

140 140 Roberts IAG and Chakravorty S (2019) Thrombocytopenia in the newborn. In: Michelson A, Cataneo M, Frelinger A and Newman P (eds), Platelets, 4th edn. Academic Press, New York, pp. 813–831.

141 141 Sola‐Visner MC, Christensen RD, Hutson AD and Rimsza LM (2007) Megakaryocyte size and concentration in the bone marrow of thrombocytopenic and non‐thrombocytopenic neonates. Pediatr Res, 61, 479–484.

142 142 Davenport P, Liu ZJ and Sola‐Visner M (2020) Changes in megakaryopoiesis over ontogeny and their implications in health and disease. Platelets, 31, 692–699.

143 143 Murray NA and Roberts IAG (1995) Circulating megakaryocytes and their progenitors (BFU‐MK and CFU‐MK) in term and pre‐term neonates. Br J Haematol, 89, 41–46.

144 144 Saxonhouse MA, Christensen RD, Walker DM, Hutson AD and Sola MC (2004) The concentration of circulating megakaryocyte progenitors in preterm neonates is a function of post‐conceptional age. Early Hum Dev, 78, 119–124.

145 145 Saxonhouse MA, Sola MC, Pastos KM, Ignatz ME, Hutson AD, Christensen RD and Rimsza LM (2004) Reticulated platelet percentages in term and preterm neonates. J Pediatr Hematol Oncol, 26, 797–802.

146 146 Wiedmeier SE, Henry E, Sola‐Visner MC and Christensen RD (2009) Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multi hospital healthcare system. J Perinatol, 29, 130–136.

147 147 Cremer M, Sallmon H, Kling PJ, Buhrer C and Dame C (2016) Thrombocytopenia and platelet transfusion in the neonate. Semin Fetal Neonatal Med, 21, 10–18.

148 148 MacQueen BC, Christensen RD, Henry E, Romrell AM, Pysher TJ, Bennett ST and Sola‐Visner MC (2017) The immature platelet fraction: creating neonatal reference intervals and using these to categorize neonatal thrombocytopenias. J Perinatol, 37, 834–838.

149 149 Lorenz V, Ferrer‐Marin, Israels SJ and Sola‐Visner M (2019) Platelet function in the newborn. In: Michelson A, Cataneo M, Frelinger A and Newman P (eds), Platelets, 4th edn. Academic Press, New York, pp. 443–457.

150 150 Corby DG and O’Barr TP (1981) Decreased alpha‐adrenergic receptors in newborn platelets: cause of abnormal response to epinephrine. Dev Pharmacol Ther, 2, 215–225.

151 151 Caparros‐Perez E, Teruel‐Montoya R, Lopez‐Andreo MJ, Llanos MC, Rivera J, Palma‐Barqueros V et al. (2017) Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS One, 12, e0183042.

152 152 Sitaru AG, Holzhauer S, Speer CP, Singer D, Obergfell A, Walter U, Grossmann R et al. (2005) Neonatal platelets from cord blood and peripheral blood. Platelets, 16, 203–210.

153 153 Bednarek FJ, Bean S, Barnard MR, Frelinger AL and Michelson AD (2009) The platelet hyporeactivity of extremely low birth weight neonates is age‐dependent. Thromb Res, 124, 42–45.

154 154 Grevsen AK, Hviid CVB, Haansen AK and Hvas A‐M (2021) Platelet count and function in umbilical cord blood versus peripheral blood in term neonates. Platelets, 32, 626–632.

155 155 Kayiran SM, Ozbek N, Turan M and Gurankan B (2003) Significant differences between capillary and venous complete blood counts in the neonatal period. Clin Lab Haematol, 25, 9–16.

156 156 Özbek N, Gürakan B and Kayiran SM (2000) Complete blood cell counts in capillary and venous blood of healthy term newborns. Acta Haematol, 103, 226–228.

Neonatal Haematology

Подняться наверх