Читать книгу Физика повседневности. От мыльных пузырей до квантовых технологий - Жак Виллен - Страница 15

Часть 1
Физика вокруг нас
Глава 3
Интерференция и когерентность

Оглавление

Явление интерференции света было доказано в начале XIX века историческим опытом английского физика Томаса Юнга. Ученые той эпохи спорили о природе света: его интерпретировали или как волновое явление, что, казалось, подтвердил опыт Юнга, или как поток частиц. В четвертой части этой книги (см. главу 22) мы увидим, что все они были правы.

Устройство Юнга (илл. 6) содержит точечный источник монохроматического света S, расположенный перед непрозрачной пластиной, в которой на расстоянии нескольких миллиметров друг от друга проделаны два отверстия чрезвычайно малого диаметра (порядка 0,1 мм). Свет, проходящий через отверстия, достигает экрана. И мы видим на нем – удивительно! – не сплошное пятно света, а пятно, демонстрирующее чередование темных и светлых полос. Как так получается?


7. a. Две волны с произвольным фазовым сдвигом φ.

b. Две волны в противофазе интерферируют, мешая друг другу: максимальная амплитуда одной соответствует минимальной амплитуде другой


8. Основная (более яркая, справа) и вторичная радуги. Их цвета расположены в противоположном порядке


Интенсивность света, наблюдаемая в точке M экрана, является результатом наложения волн, исходящих из отверстий A и B. Это явление алгебраического суммирования волн, приходящих из разных точек, называется интерференцией. Оно может привести и к нулевой или низкой общей интенсивности (это означает деструктивную интерференцию), и к более высокой интенсивности (так называемая конструктивная интерференция). Конструктивный или деструктивный характер интерференции зависит от смещения волн относительно друг друга, или фазового сдвига, в момент их попадания на экран (илл. 7).

На оси SO волны, исходящие из A и B, находятся в фазе: наблюдается светлая полоса. По мере отклонения от этой оси, в зависимости от точки на экране, волны преодолевают различные расстояния (оптические пути) от отверстий. Их фазы расходятся, и в результате наблюдается периодический ряд светлых и темных полос. Существует деструктивная интерференция (темная полоса), когда разница в длине оптического пути равна половине длины волны, или нечетному числу длин полуволн. Есть и конструктивная интерференция (светлая полоса), когда разница в длине оптического пути кратна длине волны.

Для видимого света длина волны λ – порядка микрометра, что примерно в десять раз меньше диаметра волоса. Однако расстояние между полосами на экране значительно возрастает, если этот экран находится на достаточном расстоянии d от отверстий. Размер OM = x полос может быть найден из условия AM – BM = nλ, где n – целое число. Если a = AB – расстояние между отверстиями, то расстояние между полосами равно λd/a. Приняв λ = 0,5 мкм, d = 3 м и a = 0,5 см, находим, что расстояние между полосами составляет 0,3 мм. Таким образом, становится понятно, почему нам удается увидеть интерференционные полосы невооруженным глазом, хотя это и не всегда просто. При практических работах по интерференции сегодняшние студенты часто сталкиваются с трудностями. Поэтому нам остается лишь восхищаться Юнгом, который сумел поставить этот опыт два века назад.


9. Путь световых лучей в основной и вторичной радугах. Средний угол отклонения – 42° и 51° соответственно. Впоследствии лучи света, составляющие основную радугу, образуют конус вращения, осью которого является прямая «Солнце – наблюдатель», а угол между ней и образующими составляет 42°


А что будет, если вместо освещения двух отверстий одним и тем же источником света использовать два точечных источника монохроматического света? Оказывается, что в этом случае эксперимент потерпит неудачу! Интерференция возможна только для когерентных источников, фазовый сдвиг которых постоянен во времени. Два же случайных источника, если не принять каких-либо особых мер, не удовлетворяют этому условию.

Трудность наблюдения за интерференцией света может навести на мысль, что это довольно экзотическое явление. Вовсе нет! Хорошим примером интерференции служат радужные переливы на мыльных пузырях (см. главу 6, «Мыльные пузыри»). В этом случае интерференция происходит между светом, отраженным от передней и задней границ мыльной пленки. Поскольку наблюдения обычно производятся при белом свете, то волны, находящиеся в противофазе, гасят друг друга, и полученный свет выглядит разноцветным. Видимый цвет пленки зависит от ее толщины и от положения наблюдателя относительно пузыря. Подобные интерференционные переливы цвета можно увидеть на крыльях бабочек, в оперении колибри, а также на наружном покрове некоторых насекомых.

Физика повседневности. От мыльных пузырей до квантовых технологий

Подняться наверх