Читать книгу Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis - James F. Epperson - Страница 2
ОглавлениеTable of Contents
1 Cover
4 Preface to the Solutions Manual for the Third Edition
5 CHAPTER 1: INTRODUCTORY CONCEPTS AND CALCULUS REVIEW 1.1 BASIC TOOLS OF CALCULUS 1.2 ERROR, APPROXIMATE EQUALITY, AND ASYMPTOTIC ORDER NOTATION 1.3 A PRIMER ON COMPUTER ARITHMETIC 1.4 A WORD ON COMPUTER LANGUAGES AND SOFTWARE 1.5 A BRIEF HISTORY OF SCIENTIFIC COMPUTING
6 Chapter 2: A SURVEY OF SIMPLE METHODS AND TOOLS 2.1 HORNER'S RULE AND NESTED MULTIPLICATION 2.2 DIFFERENCE APPROXIMATIONS TO THE DERIVATIVE 2.3 APPLICATION: EULER'S METHOD FOR INITIAL VALUE PROBLEMS 2.4 LINEAR INTERPOLATION 2.5 APPLICATION — THE TRAPEZOID RULE 2.6 SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS 2.7 APPLICATION: SIMPLE TWO‐POINT BOUNDARY VALUE PROBLEMS
7 CHAPTER 3: ROOT‐FINDING 3.1 THE BISECTION METHOD 3.2 NEWTON'S METHOD: DERIVATION AND EXAMPLES 3.3 HOW TO STOP NEWTON'S METHOD 3.4 APPLICATION: DIVISION USING NEWTON'S METHOD 3.5 THE NEWTON ERROR FORMULA 3.6 NEWTON'S METHOD: THEORY AND CONVERGENCE 3.7 APPLICATION: COMPUTATION OF THE SQUARE ROOT 3.8 THE SECANT METHOD: DERIVATION AND EXAMPLES 3.9 FIXED POINT ITERATION 3.10 ROOTS OF POLYNOMIALS (PART 1) 3.11 SPECIAL TOPICS IN ROOT‐FINDING METHODS 3.12 VERY HIGH‐ORDER METHODS AND THE EFFICIENCY INDEX NOTES
8 CHAPTER 4: INTERPOLATION AND APPROXIMATION 4.1 LAGRANGE INTERPOLATION 4.2 NEWTON INTERPOLATION AND DIVIDED DIFFERENCES 4.3 INTERPOLATION ERROR 4.4 APPLICATION: MULLER'S METHOD AND INVERSE QUADRATIC INTERPOLATION 4.5 APPLICATION: MORE APPROXIMATIONS TO THE DERIVATIVE 4.6 HERMITE INTERPOLATION 4.7 PIECEWISE POLYNOMIAL INTERPOLATION 4.8 AN INTRODUCTION TO SPLINES 4.9 TENSION SPLINES 4.10 LEAST SQUARES CONCEPTS IN APPROXIMATION 4.11 ADVANCED TOPICS IN INTERPOLATION ERROR NOTES
9 CHAPTER 5: NUMERICAL INTEGRATION 5.1 A REVIEW OF THE DEFINITE INTEGRAL 5.2 IMPROVING THE TRAPEZOID RULE 5.3 SIMPSON'S RULE AND DEGREE OF PRECISION 5.4 THE MIDPOINT RULE 5.5 APPLICATION: STIRLING'S FORMULA 5.6 GAUSSIAN QUADRATURE 5.7 EXTRAPOLATION METHODS 5.8 SPECIAL TOPICS IN NUMERICAL INTEGRATION
10 CHAPTER 6: NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 6.1 The Initial Value Problem—Background 6.2 Euler's Method 6.3 Analysis of Euler's Method 6.4 Variants of Euler's Method 6.5 Single Step Methods—Runge‐Kutta 6.6 Multistep Methods 6.7 Stability Issues 6.8 Application to Systems of Equations 6.9 Adaptive Solvers 6.10 Boundary Value Problems NOTE
11 CHAPTER 7: NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS 7.1 LINEAR ALGEBRA REVIEW 7.2 LINEAR SYSTEMS AND GAUSSIAN ELIMINATION 7.3 OPERATION COUNTS 7.4 THE FACTORIZATION 7.5 PERTURBATION, CONDITIONING AND STABILITY 7.6 SPD MATRICES AND THE CHOLESKY DECOMPOSITION 7.7 APPLICATION: NUMERICAL SOLUTION OF LINEAR LEAST SQUARES PROBLEMS 7.8 SPARSE AND STRUCTURED MATRICES 7.9 ITERATIVE METHODS FOR LINEAR SYSTEMS – A BRIEF SURVEY 7.10 NONLINEAR SYSTEMS: NEWTON'S METHOD AND RELATED IDEAS 7.11 APPLICATION: NUMERICAL SOLUTION OF NONLINEAR BVP's
12 CHAPTER 8: APPROXIMATE SOLUTION OF THE ALGEBRAIC EIGENVALUE PROBLEM 8.1 EIGENVALUE REVIEW 8.2 REDUCTION TO HESSENBERG FORM 8.3 POWER METHODS 8.4 BISECTION AND INERTIA TO COMPUTE EIGENVALUES OF SYMMETRIC MATRICES 8.5 AN OVERVIEW OF THE ITERATION 8.6 APPLICATION: ROOTS OF POLYNOMIALS, II 8.7 APPLICATION: COMPUTATION OF GAUSSIAN QUADRATURE RULES NOTE
13 CHAPTER 9: A SURVEY OF NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 9.1 DIFFERENCE METHODS FOR THE DIFFUSION EQUATION 9.2 FINITE ELEMENT METHODS FOR THE DIFFUSION EQUATION 9.3 DIFFERENCE METHODS FOR POISSON EQUATIONS NOTE
14 CHAPTER 10: AN INTRODUCTION TO SPECTRAL METHODS 10.1 SPECTRAL METHODS FOR TWO‐POINT BOUNDARY VALUE PROBLEMS 10.2 SPECTRAL METHODS IN TWO DIMENSIONS 10.3 SPECTRAL METHODS FOR TIME‐DEPENDENT PROBLEMS 10.4 CLENSHAW‐CURTIS QUADRATURE
List of Tables
1 Chapter 2Table 2.1 Derivative Approximations.Table 2.2 Table for Problem 4.Table 2.3 (Table 2.1 in text.) Example of derivative approximation to at ....Table 2.4 Solution values for Exercise 2.3.11.Table 2.5 (Table 2.8 in the text) Table of values.
2 Chapter 3Table 3.1 Solutions to Problem 3.1.3Table 3.2 Solutions to Problem 3.1.10.Table 3.3 Solution to Problem 3.2.11.Table 3.4 Solutions to Problem 3.3.3.Table 3.5 Newton iteration for Problem 4d, §3.4.Table 3.6 Data for Problems 3 and 4.Table 3.7 Newton iteration for .Table 3.8 Secant iteration for .Table 3.9 Solutions to Problem 3.10.6.Table 3.10 Solutions to Problem 3.10.7.Table 3.11 Solutions to Problem 3.10.8.Table 3.12 Hybrid iteration for .Table 3.13 Regula‐falsi iteration for .Table 3.14 Hybrid iteration for .
3 Chapter 4Table 4.1 Data for Problem 7.Table 4.2 Data for Problem 8.Table 4.3 Table of values.Table 4.4 Table of values for Problem 10.Table 4.5 Temperature‐pressure values for steam; Problem 11.Table 4.6 Temperature‐pressure values for gaseous ammonia; Problem 12.Table 4.7 Data for Problem 13.Table 4.8 Solutions to Exercise 4.4.9Table 4.9 Table for divided differences for quintic Hermite interpolation.Table 4.10 Divided difference table.Table 4.11 Data for Problem 13.Table 4.12 Data for Problem 21.Table 4.13 Data for Problem 2.Table 4.14 Data for Problem 4.Table 4.15 Data for Problem 5.Table 4.16 Data for Problem 6.Table 4.17 Data for Problem 7.
4 Chapter 5Table 5.1 Data for Problem 6.Table 5.2 Results for Exercise 5.3.6.Table 5.3 Results for Exercise 5.4.7.Table 5.4 Data for Problem 10.Table 5.5 Table of for .
5 Chapter 6Table 6.1 Solutions to Exercise 6.2.4.Table 6.2 Results for Problem 8, first part.Table 6.3 Results for Problem 8, second part.
6 Chapter 7Table 7.1 Random vector tests (Problem 3), using Problem 2(d).Table 7.2 Data for Problem 7.
7 Chapter 9Table 9.1 Results for Problem 4.Table 9.2 Results for Problem 5.
8 Chapter 10Table 10.1 Spectral solution results for Problem 10.2.3.Table 10.2 Solution for 10.3.2(b) and (c).
List of Illustrations
1 Chapter 2Figure 2.1 Exact solution for Exercise 2.3.7.Figure 2.2 Error plot for Exercise 2.3.7.Figure 2.3 Exact solution for Exercise 2.3.9.Figure 2.4 Error plot for Exercise 2.3.9.Figure 2.5 Estimated timing cost for Problem 13, semilog scale.Figure 2.6 Exact solution for Exercise 2.7.8.
2 Chapter 3Figure 3.1 Solution for Problem 3.2.7.Figure 3.2 Orbital geometry for Problems 4 and 5Figure 3.3 Solution for Problem 3.8.10.Figure 3.4 Solution curves for Problem 5, using 20 points.Figure 3.5 Solution curves for Problem 5, using 40 points.
3 Chapter 4Figure 4.1 Interpolate and function for Problem 4.Figure 4.2 Error for Problem 4.Figure 4.3 Approximation to .Figure 4.4 Error in approximation to .Figure 4.5 Solution plot for Exercise 4.2.10a.Figure 4.6 Error plot for Exercise 4.2.10a.Figure 4.7 Solution plot for Exercise 4.2.10b.Figure 4.8 Error plot for Exercise 4.2.10b.Figure 4.9 Solution plot for Exercise 4.2.11a.Figure 4.10 Solution plot for Exercise 4.2.11b.Figure 4.11 Figure for Problem 13.Figure 4.12 Solution plot for Exercise 4.2.13.Figure 4.13 Solution plot for Exercise 4.2.14.Figure 4.14 Error plot for Problem 10.Figure 4.15 Error plot for Problem 4.Figure 4.16 Polynomial (natural) spline fit to the data in Problem 4.Figure 4.17 Tension spline fit ( ) to the data in Problem 4.Figure 4.18 Figure 4.19 Figure 4.20 Solution plot for Exercise 4.10.3.Figure 4.21 Figure for Problem 7. The closed curve is the elliptical orbit, ...Figure 4.22 Figure 4.23 Figure 4.24 Figure 4.25 Figure 4.26 Figure 4.27 Figure 4.28 Figure 4.29 Figure 4.30 Figure 4.31
4 Chapter 5Figure 5.1 Solution for Exercise 5.3.10.
5 Chapter 6Figure 6.1 Solution to Problem 2b.Figure 6.2 Solution to Problem 3.Figure 6.3 Solution curve for Problem 10.Figure 6.4 Solution plot for Problem 9.
6 Chapter 7Figure 7.1 Solution plot for Exercise 7.5.12.Figure 7.2 Solution plot for Exercise 7.5.13.Figure 7.3 Solution plots for Exercise 7.7.3.
7 Chapter 9Figure 9.1 Maximum error as a function of time step number for Problem 5.Figure 9.2 Solution to Problem 10 for , .Figure 9.3 Contour plot for Problem 3, using and .
8 Chapter 10Figure 10.1 Solution to Problem 1, .Figure 10.2 Error for Problem 1, .Figure 10.3 Contour plot for Problem 2, using and .Figure 10.4 Contour plot of approximate solution for ; compare to Fig. 10.3...Figure 10.5 Coefficient decay for .
Pages
1 iii
2 iv
3 ix
4 1
5 2
6 3
7 4
8 5
9 6
10 7
11 8
12 9
13 10
14 11
15 12
16 13
17 14
18 15
19 16
20 17
21 18
22 19
23 20
24 21
25 22
26 23
27 24
28 25
29 26
30 27
31 28
32 29
33 30
34 31
35 32
36 33
37 34
38 35
39 36
40 37
41 38
42 39
43 40
44 41
45 42
46 43
47 44
48 45
49 46
50 47
51 48
52 49
53 50
54 51
55 52
56 53
57 55
58 56
59 57
60 58
61 59
62 60
63 61
64 62
65 63
66 64
67 65
68 66
69 67
70 68
71 69
72 70
73 71
74 72
75 73
76 74
77 75
78 76
79 77
80 78
81 79
82 80
83 81
84 82
85 83
86 84
87 85
88 86
89 87
90 88
91 89
92 90
93 91
94 92
95 93
96 94
97 95
98 96
99 97
100 98
101 99
102 101
103 102
104 103
105 104
106 105
107 106
108 107
109 108
110 109
111 110
112 111
113 112
114 113
115 114
116 115
117 116
118 117
119 118
120 119
121 120
122 121
123 122
124 123
125 124
126 125
127 126
128 127
129 128
130 129
131 130
132 131
133 132
134 133
135 134
136 135
137 136
138 137
139 138
140 139
141 140
142 141
143 142
144 143
145 144
146 145
147 146
148 147
149 148
150 149
151 150
152 151
153 152
154 153
155 154
156 155
157 156
158 157
159 158
160 159
161 160
162 161
163 162
164 163
165 164
166 165
167 166
168 167
169 168
170 169
171 170
172 171
173 172
174 173
175 174
176 175
177 176
178 177
179 178
180 179
181 180
182 181
183 182
184 183
185 185
186 186
187 187
188 188
189 189
190 190
191 191
192 192
193 193
194 194
195 195
196 196
197 197
198 198
199 199
200 200
201 201
202 202
203 203
204 204
205 205
206 206
207 207
208 208
209 209
210 210
211 211
212 212
213 213
214 214
215 215
216 216
217 217
218 218
219 219
220 220
221 221
222 222
223 223
224 224
225 225
226 226
227 227
228 228
229 229
230 230
231 231
232 232
233 233
234 234
235 235
236 236
237 237
238 238
239 239
240 240
241 241
242 242
243 243
244 244
245 245
246 247
247 248
248 249
249 250
250 251
251 252
252 253
253 254
254 255
255 256
256 257
257 258
258 259
259 260
260 261
261 262
262 263
263 264
264 265
265 266
266 267
267 268
268 269
269 270
270 271
271 272
272 273
273 274
274 275
275 277
276 278
277 279
278 280
279 281
280 282
281 283
282 284
283 285