Читать книгу Turbo: Real World High-Performance Turbocharger Systems - Jay K Miller - Страница 10

INTRODUCTION TO TURBOCHARGERS

Оглавление

The turbocharger is the single most significant engine component or add-on device for increasing horsepower in the internal combustion engine. There may be arguments to the contrary, but I make this statement with good reason. To fully understand this concept, it’s important to look at an engine in a very fundamental way.

An engine is first an air pump. But its primary purpose is a device that converts the combustion of various types of fuel into mechanical energy so that it may be used in a constructive and controlled manner. This conversion of thermal energy into mechanical energy is performed by several simple machines contained within the engine. The specifics of this series of simple machines within the engine vary by design and constitute the differences between particular engine types. Clearly some designs are better than others, but that is a separate issue.


The Banks Twin Turbo Small Block Chevy is perhaps the world’s most recognizable twin-turbocharged engine assembly. (Courtesy Gale Banks Engineering)

For non-turbocharged engines, “breathing” is a challenge. This is evident in the NHRA Pro Stock ranks, a racing class where turbos are not allowed. These engines arguably represent the ultimate in power producers among all engines that do not use a forced air induction system. Most advanced engine builders agree with the fact that engine design considerations within the short block relative to improving airflow are basically maxed-out. For Pro Stock competitors, the trade secrets for increasing airflow lie within the intake manifold and cylinder head design. That’s where all of the work and technology is applied in a naturally aspirated engine simply because these engines lack forced air induction.

However, the fundamental aspect of an engine as an air pump is the key to horsepower development. The more air that an engine can pump, the more horsepower it can develop. It’s important to always remember however, that more air doesn’t make horsepower—more fuel does. As a general rule, getting more fuel into an engine usually isn’t the problem; getting enough air to burn it is. Any engine design can produce more power with the addition of a turbocharger, but only within the limits of its ability to cope with the stresses of producing additional horsepower.

Turbo: Real World High-Performance Turbocharger Systems

Подняться наверх