Читать книгу Microbiological Risk Assessment Associated with the Food Processing and Distribution Chain - Jeanne-Marie Membre - Страница 29
1.8. References
ОглавлениеAFNOR (2011). Norme NF V08-602 – Microbiologie des aliments – Dénombrement des spores dans les produits alimentaires avant traitement d’appertisation par comptage des colonies. AFNOR Store Publishing, Paris.
Anderson, N.M., Larkin, J.W., Cole, M.B., Skinner, G.E., Whiting, R.C., Gorris, L.G.M., Rodriguez, A., Buchanan, R., Stewart, C.M., Hanlin, J.H., Keener, L., Hall, P.A. (2011). Food Safety Objective approach for controlling Clostridium botulinum growth and toxin production in commercially sterile foods. Journal of Food Protection, 74(11), 1956–1989.
ANSES (2017a). Attribution des sources des maladies infectieuses d’origine alimentaire. Partie 1 : Revue des méthodes et inventaire des données [Online]. Available at: https://www.anses.fr/fr/system/files/BIORISK2015SA0162Ra.pdf.
ANSES (2017b). INCA 3 : Evolution des habitudes et modes de consommation, de nouveaux enjeux en matière de sécurité sanitaire et de nutrition Anses – Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail [Online]. Available at: https://www.anses.fr/fr/content/inca-3-evolution-des-habitudes-et-modes-de-consommation-de-nouveaux-enjeux-en-mati%C3%A8re-de.
ANSES (2018). Avis et rapport de l’Anses relatif à l’attribution des sources des maladies infectieuses d’origine alimentaire. Partie 2 : Analyse des données épidémiologiques [Online]. Available at: https://www.anses.fr/fr/system/files/BIORISK2015SA0162Ra-2.pdf.
Asakura, H., Boisen, N., Chinen, I., Cook, R., Dallman, T., Devleesschauwer, B., Feng, P., Franz, E., Fratamico, P., Gill, A., Griffin, P., Keddy, K., Mainda, G., Majowicz, S., Pires, S.M., Ogunrinola, Y., Scheutz, F., Srimanote, P., Alvarez, R.V., Esteban, E., Lejeune, J., Mylrea, G., Moreira, D., Shaw, W.K., Cahill, S., Ouattara, B., Desmarchelier, P., Nakagawa, R., Zhou, K., Grp, F.W.S.E. (2019). Hazard identification and characterization: Criteria for categorizing Shiga toxin-producing escherichia coli on a risk basis. Journal of Food Protection, 82(1), 7–21.
Augustin, J.-C., Kooh, P., Bayeux, T., Guillier, L., Meyer, T., Jourdan-Da Silva, N., Villena, I., Sanaa, M., Cerf, O., Blanchemanche, S., Bonnaud, L., Gautier, M., Gauchard, F., Nabec, L., Soler, L.-G., ANSES Working Group (2020). Contribution of foods and poor food-handling practices to the burden of foodborne infectious diseases in France. Foods, 9(11), 1644–1661.
Borch, E., Nesbakken, T., Christensen, H. (1996). Hazard identification in swine slaughter with respect to foodborne bacteria. International Journal of Food Microbiology, 30(1–2), 9–25.
Carrascosa, C., Millan, R., Saavedra, P., Jaber, J.R., Raposo, A., Sanjuan, E. (2016). Identification of the risk factors associated with cheese production to implement the hazard analysis and critical control points (HACCP) system on cheese farms. Journal of Dairy Science, 99(4), 2606–2616.
Cartron, F. and Fichet, J.-L. (2020). Vers une alimentation durable : un enjeu sanitaire, social, territorial et environnemental majeur pour la France. Report, Sénat, Paris.
Davies, R.H. and Wray, C. (1994). An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross-contamination hazards in commercial hatcheries. International Journal of Food Microbiology, 24(1–2), 147–160.
Detmer, A. and Glenting, J. (2006). Live bacterial vaccines – A review and identification of potential hazards. Microbial Cell Factories, 5, 23–34.
European Commission (2016). Food 2030 – European R&I for Food and Nutrition Security [Online]. Available at: https://doi.org/doi:10.2777/069319.
Eygue, M., Richard-Forget, F., Cappelier, J.-M., Pinson-Gadais, L., Membré, J.-M. (2020). Development of a risk-ranking framework to evaluate simultaneously biological and chemical hazards related to food safety: Application to emerging dietary practices in France. Food Control, 115, 107279.
Fach, P., Micheau, P., Mazuet, C., Perelle, S., Popoff, M. (2009). Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. Journal of Applied Microbiology, 107, 465–473.
FAO and WHO (2020). Public consultation for draft guidance of microbiological risk assessment for food [Online]. Available at: https://www.who.int/news-room/articles-detail/public-consultation-for-draft-guidance-of-microbiological-risk-assessment-for-food [Accessed 15 June 2020].
Feliciano, R.J., Boué, G., Membré, J.-M. (2020). Overview of the potential impacts of climate change on the microbial safety of the dairy industry. Foods, 9(12), 1794.
Franz, E., Van Hoek, A.H.A.M., Wuite, M., Van Der Wal, F.J., De Boer, A.G., Bouw, E.I., Aarts, H.J.M. (2015). Molecular hazard identification of non-O157 Shiga toxin-producing Escherichia coli (STEC). PloS One, 10(3).
Frazier, W.C. (1967). Food Microbiology. McGraw-Hill Inc., New York.
Gould, G.W. (1999). Sous vide foods: Conclusions of an ECFF Botulinum working party. Food Control, 10(1), 47–51.
Haddad, N. (2022). Hazards in the Food Processing and Distribution Chain. ISTE Ltd, London and Wiley, New York.
Hauschild, A.H.W., Hilsheimer, R., Jarvis, G., Raymond, D.P. (1982). Contribution of nitrite to the control of Clostridium botulinum in liver sausage. Journal of Food Protection, 45(6), 500–506.
ICMSF (2005). Micro-organisms in Foods 6: Microbiological Ecology of Food Commodities, 2nd edition. Kluwer Academic and Plenum Publishers, New York.
INVS (2013). Caractéristiques épidémiologiques du botulisme humain [Online]. Available at: http://www.invs.sante.fr/Dossiers-thematiques/Maladies-infectieuses/Risques-infectieux-d-origine-alimentaire/Botulisme/Donnees-epidemiologiques [Accessed 06 August 2014].
Jimenez, S.M., Salsi, M.S., Tiburzi, M.C., Pirovani, M.E. (2002). A comparison between broiler chicken carcasses with and without visible faecal contamination during the slaughtering process on hazard identification of Salmonella spp. Journal of Applied Microbiology, 93(4), 593–598.
Kleter, G.A. and Marvin, H.J.P. (2009). Indicators of emerging hazards and risks to food safety. Food and Chemical Toxicology, 47(5), 1022–1039.
Kouame-Sina, S.M., Makita, K., Costard, S., Grace, D., Dadie, A., Dje, M., Bonfoh, B. (2012). Hazard identification and exposure assessment for bacterial risk assessment of informally marketed milk in Abidjan, Cote d’Ivoire. Food and Nutrition Bulletin, 33(4), 223–234.
Lammerding, A.M. and Fazil, A. (2000). Hazard identification and exposure assessment for microbial food safety risk assessment. International Journal of Food Microbiology, 58(3), 147–157.
Lateef, A., Davies, T.E., Adelekan, A., Adelere, I.A., Adedeji, A.A., Fadahunsi, A.H. (2010). Akara ogbomoso: Microbiological examination and identification of hazards and critical control points. Food Science and Technology International, 16(5), 389–400.
Lund, B.M. (1993). Quantification of factors affecting the probability of development of pathogenic bacteria, in particular Clostridium botulinum, in foods. Journal of Industrial Microbiology, 12, 144–155.
McKellar, R.C. and Lu, X. (2004). Modeling Microbial Responses in Food. CRC Press, London.
Membré, J.-M. (2014). HAZARD APPRAISAL (HACCP). Establishment of performance criteria. In Encyclopedia of Food Microbiology, 2nd edition, Batt, C. and Tortorello, M.-L. (eds). Elsevier, Amsterdam.
Membré, J.-M. and Valdramidis, V. (2016). Modeling in Food Microbiology: From Predictive Microbiology to Exposure Assessment. ISTE Press, London, and Elsevier, Oxford.
Membré, J.-M., Wemmenhove, E., McClure, P.J. (2009). Exposure assessment model to combine thermal inactivation (log reduction) and thermal injury (heat-treated spore lag time) effects on non-proteolytic Clostridium botulinum. In Safety, Reliability and Risk Analysis: Theory, Methods and Applications, Martorell, S., Soares, C.G., Barnett, J. (eds). CRC Press and Taylor and Francis Group, London.
Membré, J.-M., Diao, M., Thorin, C., Cordier, G., Zuber, F., André, S. (2015). Risk assessment of proteolytic Clostridium botulinum in canned foie gras. International Journal of Food Microbiology, 210(0), 62–72.
Mossel, D.A.A., Weenk, G.H., Morris, G.P., Struijk, C.B. (1998). Identification, assessment and management of food-related microbiological hazards: Historical, fundamental and psychosocial essentials. International Journal of Food Microbiology, 40(3), 211–243.
Mosupye, F.M. and Von Holy, A. (2000). Microbiological hazard identification and exposure assessment of street food vending in Johannesburg, South Africa. International Journal of Food Microbiology, 61(2–3), 137–145.
Obadina, A.O., Oyewole, O.B., Sanni, L.O., Tomlins, K.I., Westby, A. (2008). Identification of hazards and critical control points (CCP) for cassava fufu processing in south-west Nigeria. Food Control, 19(1), 22–26.
Pielaat, A., Boer, M.P., Wijnands, L.M., Van Hoek, A.H.A.M., El, B., Barker, G.C., Teunis, P.F.M., Aarts, H.J.M., Franz, E. (2015). First step in using molecular data for microbial food safety risk assessment: Hazard identification of Escherichia coli O157:H7 by coupling genomic data with in vitro adherence to human epithelial cells. International Journal of Food Microbiology, 213, 130–138.
Rantsiou, K., Kathariou, S., Winkler, A., Skandamis, P., Saint-Cyr, M.J., Rouzeau-Szynalski, K., Amézquita, A. (2018). Next generation microbiological risk assessment: Opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. International Journal of Food Microbiology, 287, 3–9.
Raphael, B.H. and Andreadis, J.D. (2007). Real-time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A-G) gene complex. Journal of Microbiology Methods, 71, 343–346.
Schillinger, U., Geisen, R., Holzapfel, W.H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Science and Technology, 7(5), 158–164.
Stumbo, C.R. (1973). Thermobacteriology in Food Processing, 2nd edition. Academic Press, New York.
Taulo, S., Wetlesen, A., Abrahamsen, R., Kululanga, G., Mkakosya, R., Grimason, A. (2008). Microbiological hazard identification and exposure assessment of food prepared and served in rural households of Lungwena, Malawi. International Journal of Food Microbiology, 125(2), 111–116.
Valdramidis, V., Cummin, E., Van Impe, J. (2017). Quantitative Tools for Sustainable Food and Energy in the Food Chain. Eurosis Publisher, Ghent.
Van Gerwen, S.J.C., De Wit, J.C., Notermans, S., Zwietering, M.H. (1997). An identification procedure for foodborne microbial hazards. International Journal of Food Microbiology, 38(1), 1–15.
WHO (2019). Food safety, climate change and the role of the WHO [Online]. Available at: https://www.who.int/foodsafety/publications/all/climate_change/en/ [Accessed January 2021].
WHO (2020). Assessing microbiological risks in food [Online]. Available at: https://www.who.int/activities/assessing-microbiological-risks-in-food [Accessed 10 February 2020].
Woudstra, C., Skarin, H., Anniballi, F., Fenicia, L., Bano, L., Drigo, I., Koene, M., Bäyon-Auboyer, M.H., Buffereau, J.P., De Medici, D., Fach, P. (2012). Neurotoxin gene profiling of Clostridium botulinum types C and D native to different countries within Europe. Applied and Environmental Microbiology, 78, 3120–3127.
Zwietering, M.H., Jacxsens, L., Membré, J.-M., Nauta, M.J., Peterz, M. (2016). Relevance of microbial finished product testing in food safety management. Food Control, 60, 31–43.