Читать книгу A History of Inventions, Discoveries, and Origins - Johann Beckmann - Страница 39

On the Art of Glass-Painting. By a Correspondent.

Оглавление

Table of Contents

It is a singular fact, that the art of glass-painting, practised with such success during the former ages from one end of Europe to the other, should gradually have fallen into such disuse, that in the beginning of the last century it came to be generally considered as a lost art. In the course of the eighteenth century, however, the art again began to attract attention, and many attempts were made to revive it. It was soon found by modern artists, that by employing the processes always in use among enamel-painters, the works of the old painters on glass might in most respects be successfully imitated; but they were totally unable to produce any imitation whatever of that glowing red which sheds such incomparable brilliancy over the ancient windows that still adorn so many of our churches334. For this splendid colour they possessed no substitute, until a property, peculiar to silver alone among all the metals, was discovered, which will presently be described. The art of enamelling on glass differs little from the well-known art of enamelling on other substances. The colouring materials (which are exclusively metallic) are prepared by being ground up with a flux, that is, a very fusible glass, composed of silex, flint-glass, lead, and borax: the colour with its flux is then mixed with volatile oil, and laid on with the brush. The pane of glass thus enamelled is then exposed to a dull red heat, just sufficient to soften and unite together the particles of the flux, by which means the colour is perfectly fixed on the glass. Treated in this way, gold yields a purple, gold and silver mixed a rose-colour, iron a brick-red, cobalt a blue335; mixtures of iron, copper and manganese, brown and black. Copper, which yields the green in common enamel-painting336, is not found to produce a fine colour when applied in the same way to glass, and viewed by transmitted light; for a green therefore recourse is often had to glass coloured blue on one side and yellow on the other. To obtain a yellow, silver is employed, which, either in the metallic or in any other form, possesses the singular property of imparting a transparent stain, when exposed to a low red heat in contact with glass. This stain is either yellow, orange, or red, according to circumstances. For this purpose no flux is used: the prepared silver is merely ground up with ochre or clay, and applied in a thick layer upon the glass. When removed from the furnace the silver is found not at all adhering to the glass; it is easily scraped off, leaving a transparent stain, which penetrates to a certain depth. If a large proportion of ochre has been employed, the stain is yellow; if a small proportion, it is orange-coloured; and by repeated exposure to the fire, without any additional colouring matter, the orange may be converted into red. This conversion of orange into red is, I believe, a matter of much nicety, in which experience only can ensure success. Till within a few years this was the only bright red in use among modern glass-painters; and though the best specimens certainly produce a fine effect, yet it will seldom bear comparison with the red employed in such profusion by the old artists.

Besides the enamels and stains above-described, artists, whenever the subject will allow of it, make use of panes coloured throughout their substance in the glass-house melting-pot, because the perfect transparency of such glass gives a brilliancy of effect, which enamel-colouring, always more or less opake, cannot equal. It was to a glass of this kind that the old glass-painters owed their splendid red. This in fact is the only point in which the modern and ancient processes differ, and this is the only part of the art which was ever really lost. Instead of blowing plates of solid red, the old glass-makers used to flash a thin layer of red over a substratum of plain glass. Their process must have been to melt side by side in the glass-house a pot of plain and a pot of red glass: then the workman, by dipping his rod first into the plain and then into the red glass pot, obtained a lump of plain glass covered with a coating of red, which, by dexterous management in blowing and whirling, he extended into a plate, exhibiting on its surface a very thin stratum of the desired colour337. In this state the glass came into the hands of the glass-painter, and answered most of his purposes, except when the subject required the representation of white or other colours on a red ground: in this case it became necessary to employ a machine like the lapidary’s wheel, partially to grind away the coloured surface till the white substratum appeared.

The material employed by the old glass-makers to tinge their glass red was the protoxide of copper, but on the discontinuance of the art of glass-painting the dependent manufacture of red glass of course ceased, and all knowledge of the art became so entirely extinct, that the notion generally prevailed that the colour in question was derived from gold338. It is not a little remarkable that the knowledge of the copper-red should have been so entirely lost, though printed receipts have always existed detailing the whole process. Baptista Porta (born about 1540) gives a receipt in his Magia Naturalis, noticing at the same time the difficulty of success. Several receipts are found in the compilations of Neri, Merret and Kunckel, from whence they have been copied into our Encyclopædias339. None of these receipts however state to what purposes the red glass was applied, nor do they make any mention of the flashing. The difficulty of the art consists in the proneness of the copper to pass from the state of protoxide into that of peroxide, in which latter state it tinges glass green. In order to preserve it in the state of protoxide, these receipts prescribe various deoxygenating substances to be stirred into the melted glass, such as smiths’ clinkers, tartar, soot, rotten wood, and cinnabar.

One curious circumstance deserves to be noticed, which is, that glass containing copper when removed from the melting-pot sometimes only exhibits a faint greenish tinge, yet in this state nothing more than simple exposure to a gentle heat is requisite to throw out a brilliant red. This change of colour is very remarkable, as it is obvious that no change of oxygenation can possibly take place during the recuisson.

The art of tinging glass by protoxide of copper and flashing it on crown-glass, has of late years been revived by the Tyne Company in England, at Choisy in France340, and in Suabia in Germany, and in 1827 the Academy of Arts at Berlin gave a premium for an imperfect receipt. To what extent modern glass-painters make use of these new glasses I am ignorant; the specimens that I have seen were so strongly coloured as to be in parts almost opake, but this is a defect which might no doubt be easily remedied341.

I shall now conclude these observations by a few notices respecting glass tinged by fusion with gold, which, though never brought into general use among glass-painters, has I know been employed in one or two instances, flashed both on crown- and on flint-glass. Not long after the time when the art of making the copper-red glass was lost, Kunkel appears to have discovered that gold melted with flint-glass was capable of imparting to it a beautiful ruby colour. As he derived much profit from the invention, he kept his method secret, and his successors have done the same to the present day. The art, however, has been practised ever since for the purpose of imitating precious stones, &c., and the glass used to be sold at Birmingham for a high price under the name of Jew’s glass. The rose-coloured scent-bottles, &c., now commonly made, are composed of plain glass flashed or coated with a very thin layer of the glass in question. I have myself made numerous experiments on this subject, and have been completely, and at last uniformly, successful, in producing glass of a fine crimson colour. One cause why so many persons have failed in the same attempt342, I suspect is that they have used too large a proportion of gold; for it is a fact, that an additional quantity of gold, beyond a certain point, far from deepening the colour, actually destroys it altogether. Another cause probably is, that they have not employed a sufficient degree of heat in the fusion. I have found that a degree of heat, which I judged sufficient to melt cast-iron, is not strong enough to injure the colour. It would appear, that in order to receive the colour, it is necessary that the glass should contain a proportion either of lead, or of some other metallic glass. I have found bismuth, zinc, and antimony to answer the purpose, but have in vain attempted to impart any tinge of this colour to crown-glass alone.

Glass containing gold exhibits the same singular change of colour on being exposed to a gentle heat, as has been already noticed with respect to glass containing copper343. The former when taken from the crucible is generally of a pale rose-colour, but sometimes colourless as water, and does not assume its ruby colour till it has been exposed to a low red-heat, either under a muffle or in the lamp. Great care must be taken in this operation, for a slight excess of fire destroys the colour, leaving the glass of a dingy brown, but with a blue transparency like that of gold-leaf. These changes of colour have been vaguely attributed to change of oxygenation in the gold; but it is obviously impossible that mere exposure to a gentle heat can effect any chemical change in the interior of a solid mass of glass, which has already undergone a heat far more intense. In fact I have found that metallic gold gives the red colour as well as the oxide, and it appears scarcely to admit of a doubt, that in a metal so easily reduced, the whole of the oxygen must be expelled long before the glass has reached its melting-point. It has long been known that silver yields its colour to glass while in the metallic state, and everything leads one to suppose that the case is the same as to gold.

There is still one other substance by means of which I find it is possible to give a red colour to glass, and that is a compound of tin, chromic acid, and lime; but my trials do not lead me to suppose that glass thus coloured will ever be brought into use.

* * * * *

With respect to the production of artificial gems, they are now made abundantly of almost every shade of colour, closely approximating to those which occur in nature, excepting in hardness and refractive power. They are formed by fusing what is called a base with various metallic oxides. The base varies in composition: thus, M. Fontanieu makes his by fusing silica with carbonate of potash, carbonate of lead and borax. M. Donault Wieland’s consists of silica, potash, borax, oxide of lead, and sometimes arsenious acid. Hence the base differs but little in composition from glass. By fusing the base with metallic oxides, the former acquires various tints. Thus with oxide of antimony the oriental topaz is prepared; with oxide of manganese and a little purple of cassius, the amethyst; with antimony and a very small quantity of cobalt, the beryl; with horn silver (chloride of silver), the diamond and opal: the oriental ruby is prepared from the base, the purple of cassius, peroxide of iron, golden sulphuret of antimony, manganese calcined with nitre and rock crystal.]

A History of Inventions, Discoveries, and Origins

Подняться наверх