Flame Retardants

Flame Retardants
Автор книги: id книги: 1887814     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21722,2 руб.     (211,77$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119752196 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book focuses on the chemistry and applications of flame retardants for polymers and other materials. It starts with a description and types of flame retardants, as well as their properties and chemical structures, to include chlorine- and bromine-containing<br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /><br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" />flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, and silicones. Inorganic materials that serve as flame retardants, such as boron-based additives, graphenes, and others are discussed in detail.<br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /><br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" />In addition, the following subjects are discussed in detail:<br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /><br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /> Flame retardant polymers<br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /> The mechanisms of flame retardants, such as flam

Оглавление

Johannes Karl Fink. Flame Retardants

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Flame Retardants. Materials and Applications

Preface

How to Use This Book

Index

Acknowledgements

1Types of Flame Retardants

1.1 History of Organic Flame Retardants

1.2 Commercially Available Flame Retardants

1.3 Chlorine-Containing Materials. 1.3.1 HET Acid

1.3.2 Dechlorane Plus

1.3.3 Chlordene

1.3.4 Tris(1,3-dichloroisopropyl) phosphate

1.3.5 Tris(2-chloroethyl) phosphate

1.4 Bromine-Containing Materials

1.4.1 Brominated Diphenyl Ethers

1.4.2 1,2-Bis(2,4,6-tribromophenoxy)ethane

1.4.3 Trioxohexahydrotriazine Compound

1.4.4 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine

1.4.5 Pentabromodiphenyl ether

1.5 Phosphorus Flame Retardants

1.5.1 DOPO

1.5.1.1 Modification of Cellulose

1.5.2 Resorcinol bis(diphenyl phosphate)

1.5.3 Resorcinol bis(di-2,6-xylyl phosphate)

1.5.4 Phosphor Amides

1.5.5 Polyphosphate Ester Morpholides

1.5.6 Cyclic Phosphazenes

1.6 Boron Additives

1.6.1 Zinc Borate

1.6.2 Boron Compounds and Magnesium Hydroxide

1.6.3 Boron Compounds and Aluminum Trihydroxide

1.6.4 Boron/Phosphorus Polymer

1.6.5 Boron Phosphate. 1.6.5.1 Boron Phosphate and Ammonium Poly(phosphate)

1.6.5.2 Boron Phosphates with Different Acidities

1.6.6 Boron-Containing Novolac Resins

1.6.7 Spirocyclic Boron Compounds

1.6.8 Boron Triazine. 1.6.8.1 Thiophene Compounds

1.6.8.2 Boronphenoxy Triazine

1.6.9 Boron Nitride. 1.6.9.1 Zinc Ferrite

1.6.9.2 Phosphorus-Free Compositions

1.6.9.3 Boron Nitride Nanomaterials

1.6.10 Azo-Boron Compounds

1.6.11 Isosorbide-Derived Boron and Phosphorus Materials

1.6.12 Boron Cyclophosphazene Derivatives

1.6.13 Cardanol DOPO and Boron-Doped Graphene

1.6.14 Boron Crosslinked Cellulose Nanofibrils

1.7 Silicones

1.7.1 Hydroxy Silicone Oil

1.7.2 Hydrogen-Containing Silicone Oil

1.7.3 Red Phosphorus and Alumina Trihydrate

1.7.4 Aluminum Hypophosphite and Expandable Graphite

1.7.5 Phosphaphenanthrene Compound

1.7.6 Phosphorus-Silicone-Nitrogen Ternary Flame Retardant

1.7.7 Calcium and Aluminium-Based Fillers

1.7.8 Macromolecular Charring Agent

1.7.9 Intumescent Flame Retardants. 1.7.9.1 Phosphorus Acid, Melamine, and Pentaerythritol

1.7.9.2 Phosphorus, Nitrogen, and Silicone

1.7.9.3 β-Cyclodextrin

1.7.9.4 Functionalized Expandable Graphite

1.7.9.5 Phosphorus-Nitrogen-Silicone Grafted Graphene Oxide

1.7.10 Chitosan-Based Nanocoatings

1.7.11 Lignin-Based Silicone

1.7.12 Silicone-Based Adhesive

1.7.13 Nanofillers

1.8 Molybdenum Compounds

1.9 Graphenes

1.9.1 Synergist for Intumescent Flame Retardants

1.9.2 Electrochemical Preparation

1.9.3 Phosphaphenanthrene Graphene Hybrid Flame Retardant

1.9.4 Phosphaphenanthrene Graphene Copolymer

1.9.5 Bio-Based Polyphosphonate and Modified Graphene Oxide

1.9.6 Black Phosphorene Graphene Composite

1.9.7 Waste Deoxyribonucleic Acid

1.9.8 Poly(ionic liquid) and Graphene

1.9.9 Copper Decorated Graphene

1.9.9.1 Zeolitic Imidazolate Modified Graphene

1.9.10 Lignin-Modified Carbon Nanotube Graphene

1.9.11 κ-Carrageenan Flame Retardant Microspheres

1.9.12 Phenethyl-Bridged DOPO and Graphene Nanosheets

1.9.13 Graphene Nanoplatelets

1.9.13.1 Condensate and Graphene Nanoplatelets

1.9.13.2 Aluminated Graphene Nanoplatelets

1.9.14 Aerogels

1.9.14.1 Alumina Oxide Graphene Nanoflakes

1.9.14.2 Ternary Hybrid Graphene Nanoflakes

1.9.15 Poly(etherimide) Membranes

1.9.16 Chitosan-Graphene Coatings

1.9.17 Polymeric Flame Retardant Functionalized Graphene

1.9.18 Graphene Oxide Compositions. 1.9.18.1 Synthesis of Graphene Oxide

1.9.18.2 Phosphorus-Modified Graphene Oxide

1.9.18.3 Organophosphate-Functionalized Graphene Oxide

1.9.18.4 Halloysite Nanotube Graphene Oxide Hybrid

1.9.18.5 POSS-Functionalized Graphene Oxide

1.9.18.6 Aluminum Hypophosphite/Reduced Graphene Oxide

1.9.18.7 Covalently Functionalized Graphene Oxide

1.9.18.8 Functionalized Graphene Oxide

1.9.18.9 Eco-friendly Epoxy/Multilayer Graphene Oxide Composites

1.9.18.10 Dual-Functionalized Graphene Oxide

1.9.18.11 Poly(ether ether ketone)-Grafted Graphene Oxide

1.9.18.12 Mesoporous Zinc Ferrite Decorated Graphene Oxide

1.9.18.13 Modified Graphene Oxide

1.10 Flame Retardant Fillers. 1.10.1 Mineral Fillers

1.10.2 Melamine Phosphate Compounds

1.11 Admixed Additives

1.11.1 Phosphorus-Based Flame Retardant Fillers. 1.11.1.1 Ammonium Poly(phosphate)

1.11.1.2 Ammonium Poly(phosphate), Boron Phosphate, Triphenyl Phosphate

1.11.2 Thermal Conductive Fillers

1.11.3 Organo-Modified Bentonites

1.11.4 Nanofillers

1.11.4.1 Poly(dimethylsiloxane)

1.12 Bound Additives

1.12.1 Vinyl Ester Resin Monomer

1.12.2 Flame Retardant and Ester Curing Agents

1.12.3 DOPO Dicyandiamide

1.12.4 Mixed Flame Retardants

References

2 Mechanisms of Flame Retardants

2.1 Flame Cooling of Halogens

2.1.1 Antimony Trioxide Synergism

2.2 Halogen-Free Flame Retardants

2.2.1 Poly(propylene) Wood Plastic Composites

2.2.2 Diphenolic Acid-Based Biphosphate

2.2.3 Degradation of Triphenyl Phosphate

2.2.4 Phosphite-Silica Synergism

2.3 Benzoxazine Resin with Triazine Structure

2.3.1 Flame Retardant Carrageenan Fiber

2.3.2 Modified Silica Sol

2.3.3 DOPO-Based Triazole

2.3.4 DOPO-Based Tetrazole

2.3.5 Phosphor Nitrogen-Containing Compound

2.3.6 Polyheptazine/PA6 Nanocomposites

References

3Dripping Inhibitors

3.1 Measurement Methods

3.2 Materials. 3.2.1 PTFE Powder

3.2.2 Support for Polyester. 3.2.2.1 Phosphonate Oligomer

3.2.2.2 Montmorillonite

3.2.2.3 Hyperbranched Poly(amine)

3.2.2.4 Thermo-Crosslinkable Copolyesters

3.2.2.5 Multiarm Aluminum Phosphinate

3.2.2.6 Chitosan and Ammonium Poly(phosphate) for PET

3.2.2.7 Schiff Bases

3.2.3 Support for Poly(lactic acid)

3.2.4 Support for Poly(urethane) Foams

References

4Smoke Suppressants

4.1 Materials. 4.1.1 Zinc Borate and Aluminum Trihydrate

4.1.2 Zinc Hydroxystannate

4.1.3 Low-Melting Sulfate Glasses

4.1.4 Iron Oxide

4.1.5 Zinc Oxide

4.1.6 Ferrites

4.1.7 Bromide-Intercalated Hydrotalcite

4.1.8 Borate-Intercalated Layered Double Hydroxide

4.1.9 Hot Melt Adhesive Composition

4.1.10 Functionalized Graphene Oxide. 4.1.10.1 Aminoethyl Piperazine and Phosphonate

4.1.10.2 Poly(aniline)/Nickel Hydroxide

4.1.11 Expandable Graphene

4.1.12 Modified Ammonium Poly(phosphate) for Thermoplastic PU

4.1.13 Glass Microspheres with Ammonium Molybdophosphate for Thermoplastic PU

4.1.14 Phosphorus-Containing Polyol for PU Foam

4.1.15 Porous Silicon Dioxide PU Foams

4.1.16 Sepiolite-Based Nanocoating for PU Foam

4.1.17 Abandoned Molecular Sieve for PU

4.1.18 Melamine Octamolybdate

4.1.19 Cardanol-Derived Zirconium Phosphate

4.1.20 Montmorillonite Nanocomposites. 4.1.20.1 PVC/Montmorillonite Nanocomposites

4.1.20.2 Polyaniline/Montmorillonite Nanocomposites

4.1.21 Waste Printed Circuit Boards

4.2 Special Applications. 4.2.1 Diesel Fuel Filters

4.2.2 Electrical Cables

References

5Standards and Testing. 5.1 Abbreviation Standard for Chemicals

5.2 Test Procedures. 5.2.1 Bromine-Based Flame Retardant Determination

5.3 Hazard Assessment

5.3.1 Human Health Hazards

5.3.1.1 Halogenated and Organophosphate Material

5.3.1.2 Spatiotemporal Analysis

5.3.1.3 Brominated Flame Retardants in Food

5.3.2 Tetrabromobisphenol A

5.3.3 Phosphorus Flame Retardants

5.4 Standards

5.4.1 Test for Flammability

5.4.2 Ignition Characteristics of Plastics

5.4.3 Heat Release Rate

5.4.4 Smoke Toxicity

5.4.5 Smoke Density

5.4.6 Electrical or Optical Fiber Cables

5.4.7 Textiles

5.5 Life Cycle Sustainability of Flame Retardants

5.5.1 Life Cycle Method

5.5.2 Electronic Applications

5.5.3 Textile Products

5.5.4 Phenolic Resin with Brominated Flame Retardant

References

6Synthesis and Fabrication Methods. 6.1 3D Printing

6.2 Mechanochemical Phosphorylation

6.3 Coating Methods. 6.3.1 Reactive Coating

6.3.2 Bulk Addition

6.4 Recycling

6.4.1 Brominated Flame Retardants

6.4.1.1 Hydrogen Chloride and Hydrogen Bromide Capture

6.4.2 Enzymatic Recycling

6.4.3 Waste Melamine Formaldehyde Foam

References

7Examples of Polymers

7.1 Poly(amides)

7.2 Nylons

7.2.1 Halogen-Containing Products

7.2.1.1 Chlorinated Products

7.2.1.2 Brominated Products

7.3 Poly(phenylene ether) Resins

7.4 Brominated Poly(phenylene ether)

7.5 Unsaturated Poly(ester)s

7.6 Epoxide Resins

7.7 Poly(carbonate)

7.8 Halogen-Free Flame Retardant Polymers

7.8.1 Organophosphorus Monomers

7.8.2 Epoxy Compounds

7.8.3 Poly(vinyl alcohol)

7.8.4 Poly(4-hydroxystyrene)

7.8.5 Poly(phosphate ester)s

7.9 Silicones. 7.9.1 Degradation Mechanism

7.9.2 Halogen-Free Flame Retardant Silicone Rubber

7.9.3 Silicone Thermoplastic Elastomer

7.10 Foams. 7.10.1 Poly(styrene) Foams

7.10.1.1 Microencapsulated Ammonium Poly(phosphate)

7.10.1.2 Macromolecular Nitrogen-Phosphorus Intumescent Flame Retardant

7.10.1.3 Hexaphenoxycyclotriphosphazene

7.10.1.4 Flame Retardant Adhesives

7.10.2 Poly(urethane) Foams

7.10.2.1 Environmental and Health Issues

7.10.2.2 Flame Retardant from PET Recycling

7.10.2.3 Bio-Based Flame Retardants

7.10.2.4 Reactive Flame Retardant

7.10.2.5 Halogen-Free Flame Retardants

7.10.2.6 Intumescent Compositions

7.10.2.7 Reactive Toughening of Intrinsic Flame Retardant

7.10.2.8 Water-Blown Rigid Poly(urethane) Foam

7.11 Nanocomposites

7.11.1 Dispersion of Nanofillers

7.11.2 Clay Nanocomposites

7.11.3 Epoxy Nanocomposites

7.11.4 Poly(styrene) Nanocomposites

7.11.5 Poly(lactic acid)-Containing Nanomaterials. 7.11.5.1 DOPO-Functionalized Multiwalled Carbon Nanotubes

7.11.5.2 Biodegradable Nanocomposites

7.11.5.3 Sepiolite Nanocomposite

7.12 Cellulosic Materials. 7.12.1 Silica Nanoparticles

7.12.2 Phytic Acid

7.12.3 Bio-Based Foams

References

8Special Uses. 8.1 Textiles

8.1.1 Environmental Issues of the End-of-Life Phase

8.1.2 Flame Retardant Poly(amide) 6

8.1.3 Flame Retardant Textile Finishes

8.1.4 Condensed Tannin

8.1.5 Reactive Phosphorus-Containing Flame Retardants

8.1.6 Textile Coatings

8.1.7 Flame Retardant Back Coating Layer for Historic Textile Fabrics

8.2 Flame Retardant Wool. 8.2.1 Flame Retardant Monomer

8.2.2 Phytic Acid Compositions

8.2.2.1 Phytic Acid and Titanium Dioxide

8.2.2.2 Phytic Acid and Silica

8.2.2.3 Phytic Acid and Chitosan Complex

8.2.2.4 Water-Soluble Polyelectrolyte Complex

8.2.3 Sulfamic Acid

8.3 Compositions for Asphalt and Bitumen

8.3.1 Comprehensive Testing Program

8.3.2 Thermal Decomposition Rates

8.3.3 Mixed Flame Retardants

8.3.4 Nanoclays

8.3.5 Effects of Aging

8.3.6 Non-Flammable Grades of Asphalts

8.3.7 Composite Flame Retardant Asphalt

8.3.8 Layered Double Hydroxides

8.3.9 Warm-Mixed Flame Retardant Modified Asphalt Binder

8.3.10 Environmentally Friendly Flame Retardant

8.4 Batteries. 8.4.1 Lithium-Ion Batteries

8.4.1.1 Phosphonamidate

8.4.1.2 Electrolytes

8.4.1.3 Separators

8.4.2 Lithium-Sulfur Batteries

8.4.2.1 Triphenyl Phosphite

8.4.2.2 Ammonium Poly(phosphate)

8.4.2.3 Intrinsic Flame Retardant Electrolyte

8.4.3 Sodium-Ion Batteries

References

Index. Acronyms

Chemicals

General Index

Also of Interest. Check out these other books by the author published by Scrivener Publishing

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

So, a lot of interesting points of view are presented that might be of interest to various professionals in, for example, the car, aircraft and electric industries. So, beyond education, this book will serve the needs of industry engineers and specialists who have only a passing knowledge of the plastics and composites industries but need to know more.

Utmost care has been taken to present reliable data. Because of the vast variety of material presented here, however, the text cannot be complete in all aspects, and it is recommended that the reader study the original literature for more complete information.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Flame Retardants
Подняться наверх