Читать книгу Harvey's Views on the Use of the Circulation of the Blood - John Green Curtis - Страница 8

RESPIRATION AND THE CIRCULATION

Оглавление

Table of Contents

So the feeding of the tissues could not sufficiently account, to Harvey's mind, for the swiftness of the circulation. What could? It is easy for us to recite the multitudinous modern duties of the blood as a bearer of cells and of chemicals from point to point and as a protector against poisoning; above all it is easy to exclaim "respiration";—to read the most striking part of the riddle by knowing the answer which was wrung laboriously from Nature after Harvey had died. It is easy for us to see that speedy death from loss of the circulating blood is practically the same as death from ligature of the arteries of the brain, or from drowning, or strangulation, or a broken neck. But this was veiled from him, and what best accounts for the volume and swiftness of the Harveian circulation was, in Harvey's day, a stumbling block to its acceptance; for no adequate reason was apparent why the whole mass of the blood should traverse the lungs, or why, if the veins receive their blood from the arteries, the venous blood should differ in color from the arterial.

Let us remember that throughout Harvey's life air was still an elementary body in the eyes of many and, for all, blood was a quite mysterious, ruddy, hot, vital liquid. Only weak magnifying glasses were available for him, and the powerful lenses of Malpighi and van Leeuwenhoek had not yet revealed to the world either capillary or blood-corpuscle. Moreover, the gossiping John Aubrey, the man who had been advised about his youthful studies by Harvey, wrote of him some years after his death, that "he did not care for Chymistrey, and was wont to speake against them [the chemists] with an undervalue."[19] Where would physiology be to-day, had not histology and chemistry long stood in the forefront beside her?

In a passage of the treatise of 1628 Harvey speaks of respiration, as follows:—

"And now it has come to this, that it would seem better worth while and more straightforward for those who seek the path by which in man the blood passes through the vena cava into the left ventricle and the venous artery,[20] to be willing to search for the truth by dissecting animals, in order to look for the reason why in the larger and more perfect animals, when full grown, nature chooses to make the blood percolate through the parenchyma of the lungs rather than take wide open paths as in all other animals (it being understood that no other path and transit can be thought out):—whether it is because the larger and more perfect animals are hotter and when they are full grown their heat is more ignited, so to speak, and prone to be smothered, that there is this permeation and transfer through the lungs in order that the heat may be tempered by the inspired air and guarded from boiling up and smothering—or for some other similar reason. But to determine these matters and explain them completely were to enter on a speculation as to the purpose for which the lungs are made. About these and their use and motion, and the whole subject of ventilation and the need and use of air, and other matters of this sort, and about the various different organs created in animals by reason thereof, although I have made a vast number of observations, I shall not speak till I can more conveniently set them forth in a treatise apart, lest by wandering at this point too far from my subject, which is the motion and use of the heart, I should seem to deal with something else and leave my position, to confuse and evade the question."[21]

Farther on in the same treatise Harvey says:—

"Moreover, the reason why the lungs have vessels so ample, both vein and artery, that the trunk of the venous artery exceeds in size the crural and jugular branches taken both together; and the reason why the lungs are so full of blood as we know them to be by experience and inspection (heeding Aristotle's warning,[22] and not deceived by the inspection of such lungs as we have removed from dissected animals from which all the blood had flowed out)—the reason is, that in the lungs and heart is the storehouse, the source, the treasury of the blood, the workshop of its perfection."[23]

So the great Englishman gropes for a moment or two by the light of ancient Greek doctrines and puts the question of respiration by. But this very attitude shows Harvey's thought to be in such contrast with the thought of to-day that in order to understand him we need to learn more fully his views of respiration; and we find with satisfaction that in his lecture notes of more than eleven years before he had not put this question by, for he had been called upon to lecture upon the uses of the lungs. We must seek in his lecture notes, therefore, for what he had thought those uses to be. These notes, however, we shall be unable to follow unless now, first of all, we shall give the floor for a while to the ancients; for from their doctrines Harvey necessarily took his cue, like the other thinkers of his time.

The momentous physiological facts that the living body of man, beast, or bird, is warm of itself and that its cooling means its death, must always have struck and impressed the human mind, whether trained or untrained. More than nineteen centuries before Harvey certain thoughts of Aristotle were recorded as follows:—

"In animals all the parts and the entire body possess a certain innate natural heat; wherefore they are sensibly warm when living, the reverse when making an end and parting with life. In the animals which have blood the origin of this heat is necessarily in the heart, in the bloodless kinds in the analogue thereof; for all work up and concoct the nourishment by means of the natural heat, the master part most of all. Life persists, therefore, when the other parts are chilled; but if what resides in this one be so affected total destruction ensues, because upon this part they all depend as the source of their heat, the soul being as it were afire within this part; that is, within the heart in the animals which have blood, in the bloodless kinds in the analogue thereof. Necessarily, therefore, the existence of life is coupled with the preservation of the heat aforesaid, and what is called death is the destruction thereof."[24]

This heat which is innate in all living animals was styled by Aristotle not only "innate" but "natural," "vital,"[25] and "physical,"[26] it being indispensable to life and to the working of the soul. He held the continued existence of the innate heat to depend upon conditions similar to those under which a fire is kept alive, viz.: protection both from burning out and from extinction due to external forces. Yet the true nature of combustion was not settled till more than a century after Harvey's death. The fact that air is necessary to fire must always have been a matter of common knowledge. Therefore, the views of the relations of air to fire maintained by Aristotle nearly twenty-one centuries before the discovery of oxygen did not seem naïve to Harvey, whatever they may seem to us. Aristotle held that air exerts upon fire a cooling influence which saves it from burning out too fast; and that the same influence is exerted upon the vital innate heat of animals by the air which they breathe in, or the water which bathes their gills.[27] Moreover, Aristotle says:—

"Why those animals breathe most which have lungs containing blood, is plain from this: that the warmer an animal is, the greater need it has of cooling, while at the same time the breath passes easily toward the source of warmth within the heart. But the way in which the heart is pierced through toward the lung must be studied from dissections and from the history of animals which I have written. In general terms, then, it is the nature of animals to need cooling on account of the firing of the soul within the heart."[28]

In the treatise styled the "History of Animals," to which he refers us, Aristotle says:—

"There are also channels from the heart which lead into the lung and divide in the same way as the windpipe, and they accompany the channels from the windpipe throughout the entire lung. The channels from the heart lie uppermost; but no common channel exists, for it is by contact[29] that they receive the breath and transmit it to the heart."[30]

The collection of ancient Greek commonly called the "Works of Hippocrates" is judged to be of the fifth and fourth centuries B.C. There is included in this collection a brief treatise on the heart; and in this occurs the earliest known account of the structure and use of the semilunar valves, which together with the rest of the cardiac valves were unknown to Aristotle. In the same Hippocratic treatise the doctrine is adhered to of the entrance of air into the heart for cooling purposes, both the right and the left ventricle being specified as receiving it. The author says:—

"The vessel which leads out of the right ventricle ... closes toward the heart, but closes imperfectly, in order that air may enter, though not very much."[31]

This piece of incorrect physiology may well have received support from the fact that the pulmonary semilunar valve is commonly found to be not quite competent when the dead and dissected pulmonary artery of the bullock is distended with water—an observation which the ancient author intimates that he has made,[32] though he does not specify the creature dissected.

Nearly five hundred years after the death of Aristotle, the analogy between life and flame was discussed, formally and at some length, by Galen. He knew his Aristotle well, and agreed with him as to the importance of respiratory cooling for protracting the indispensable heat of animals.[33] But we find Galen dealing with the uses of respiration in a less simple way than Aristotle. In a polemical treatise Galen debates the question whether "the breath drawn in in respiration" actually enters the heart, or whether it cools it without entering it. He says:—

"It is possible that the whole is breathed out again, as was believed by most physicians and philosophers, and those the keenest, who say that the heart, while it craves to be cooled, is in need not of the substance, but of the quality[34] of the breath, and that the use of respiration is indicated by the part.... I have shown in my treatise on the use of respiration that either an absolutely minute quantity, or none at all, of the substance of the air, is taken into the heart."[35]

It is clear, however, that Galen, when delivering himself of the foregoing, was a trifle carried away by the ardor of contention; for in the very treatise to which he refers us, as well as elsewhere, he not only dilates upon the cooling effects of breathing, but admits the entrance of air into the heart for a definite physiological purpose. This purpose, however, which we shall study later, is not cooling and is counted of secondary importance by Galen. Nevertheless, he goes so far as to say this:—

"That some portion of the air is drawn into the heart in its diastole and fills the vacuum which is produced, is sufficiently shown by the very magnitude of the dilation."[36]

In his treatise "On the Use of the Parts of the Human Body" Galen takes a more judicial tone in the following brief, calm summary:—

"The use of the respiration of animals arises from the heart, as has been shown. The heart itself needs in some sort the substance of the air; but, first and foremost, it craves to be cooled, because it boils with heat. The heart is cooled by the cool quality of inspiration; but expiration also cools, by pouring out that which seethes within the heart and is, in a way, burned up and sooty."[37]

Thus do we see the modern products of respiration foreshadowed.

Galen believed that the heat of animals is safeguarded also by the entrance of cooling air through the pores of the skin into the arterial system, and by the exit through these pores of injurious fumes out of the arteries.[38] In the introduction to Harvey's great treatise of 1628[39] the English physician riddles with adverse arguments this doctrine of Galen; to this we shall return later, as we shall to Galen's belief that the brain draws cooling air directly into its ventricles out of the nares through the cribriform plate of the ethmoid bone.[40]

In passing from Aristotle to Galen we have crossed nearly five centuries. Now let us pass at a leap across fourteen centuries more, from Galen at imperial Rome under Septimius Severus to Harvey at London under King James the First. Having briefly scanned the doctrines of the Greeks, let us take up our study of respiration in Harvey's private lecture notes of 1616. His crabbed handwriting has been deciphered by experts, and his notes have been both photographed and printed. If we seek therein for his thoughts about respiration, and track them through the jungle of abbreviated careless Latin and racy English in which they were jotted down, we shall find them Galenic in part, but also denying a truth which Galen had accepted. Harvey's notes are often too disconnected for quotation, calling rather for paraphrase or summary; and to make either is a task which one cannot approach without diffidence, especially as this task involves translation also. Of what I have ventured to prepare to represent parts of Harvey's note-book in the present paper some passages are simple translations, such English words as Harvey interspersed being transcribed. Naturally such passages are included between quotation marks. These are not used, however, in the case of a paraphrase or summary, even if it contains scattered English words which are Harvey's own.

Harvey fully shared the ancient view of the supreme importance of the heat of animals. In his note-book he, like Galen, deals with respiration under the heads: first, of a possible absorption of some of the substance of the air; and, second, of cooling and ventilation. Let us first take up the second head. Harvey says:—

"Without nourishment life cannot be, nor nourishment without concoction, nor concoction without heat, nor heat without ventilation;" for heat perishes either of wasting or of smothering; "so there is cooling and ventilation of the native heat, ventilation especially."[41]

His words contain reminders of Aristotle;[24] and he continues about respiration in a vein as ancient as Hippocrates,[42] as follows:—

"Nothing is so necessary, neither sense nor food. Life and respiration are convertible terms, for there is no life without breathing and no breathing without life. If the eye be cut out there is an end of seeing; if the legs be cut off there is an end of walking; if the tongue, of speech, et cetera; if respiration, there is an end of everything immediately."[43]

When Harvey jotted this down he had in mind a Galenic passage which doubtless had become the common property of all physicians in his day; for the removal of eye and legs figures in the first chapter of Galen "On the Use of Respiration."[44] Harvey continues:—

"Hence large animals are much warmer and breathe frequently, because they have need of greater cooling and ventilation inasmuch as they very greatly abound in blood and heat."[45]

In the margin opposite this passage there is written:—

"Why and how air is needed by animals which breathe and also air is necessary to a candle and to fire see W. H."

We may conjecture that this note refers to Harvey's promised treatise on respiration, which was never published.

So far Harvey has simply reiterated the ancient doctrine of cooling and ventilation, as in the passages quoted previously from the treatise of 1628. We shall find it very interesting to see how he deals with the other ancient doctrine that some of the substance of the air joins the blood in respiration. That this is true, gas analysis and the mercurial air-pump have taught us; but in this matter modern demonstration does but confirm, extend, and make precise one of the oldest of physiological beliefs. Regarding this we must now give the floor once again to the ancients, in order to make Harvey comprehensible.

Even in the days of Empedocles and Hippocrates, in the fifth and fourth centuries before Christ, men wrote of something derived from the outer air being present, for the use of the organism, in the vessels which also contain the blood.[46] To express this derivative of the outer air the ancient Greeks employed the word "pneuma" (πνεῦμα), the fundamental meaning of which seems to have been "air in motion." Various meanings were acquired by "pneuma," such as the breath of living things, the wind, or simply the air, or what we mean by the words "gas," "vapor," "steam," "exhalation," "emanation." The Latin word equivalent to "pneuma" is "spiritus," and so the English derivative of this, the word "spirits," came into use to express various meanings of the Greek "pneuma." A Hippocratic writer tells us that "the spirits cannot stand still, but go up and down" in the blood vessels. The word "spirits" here designates a derivative of the outer air crudely mingled with the blood.[47] To this writer the distinction between veins and arteries was unknown.

In the genuine works of Aristotle this Hippocratic doctrine does not reappear, though it is fairly certain that Hippocratic treatises which contain it were written before Aristotle's time. We have seen that the entrance of air into the heart, to cool the same, is an important feature of the Aristotelian physiology. Beyond the Aristotelian heart, however, we cannot trace the air which enters it. Yet we find "pneuma," "spirits," referred to by Aristotle, not seldom obscurely or in very general terms, as doing service, sometimes momentous service, in the physiology of generation and in certain workings within the bodies of full-grown creatures. In disease also spirits may play a very important part. These Aristotelian spirits, however, when their origin can be traced at all, are either innate or appear to be vapor produced within the body itself by heat or by disease. They do not appear to be recruited from the outer air which has penetrated the lungs and heart, that air seeming to complete its function within the lungs or within the heart itself by sustaining the native heat which is the great instrument of the soul, and in which the very soul itself is fired.[48]

Physicians of Aristotle's time, however, revived and handed on the doctrine that not only blood but a derivative of the air is distributed to the body at large through the vessels. After the distinction between veins and arteries had been clearly made and the latter had received their present name, a striking modification of this doctrine of the spirits was adopted and pressed by the Greek physician Erasistratus, about 300 B.C., not many years after the death of Aristotle. This modified doctrine separated the paths taken within the vessels by the blood and the spirits derived from the air, and declared the transmission of the necessary blood to the body at large to be by the veins only, that of the necessary spirits, styled "vital," to be by the arteries only. More than four hundred and fifty years later Galen shattered this doctrine and incorporated the vital spirits in the arteries with the blood, which he proved by epoch-making experiments to be normally present in the arteries, he, however, clearly recognizing differences between the cruder blood in the veins and the spirituous blood in the arteries. The tissues, therefore, still received vital spirits by way of the arteries, according to Galen, but not spirits in their pure gaseous Erasistratean state.[49] Now let Galen tell us more in his own words:—

"The breath from the windpipes, which had been drawn in from without, is worked up in the flesh of the lungs in the first place; in the second place in the heart and arteries, and especially in those of the net-like plexus; and to perfection in the ventricles of the brain, where the spirits become completely animal. But what the use may be of these animal spirits and why we have the temerity to call them so, when we confess that we are still utterly ignorant as to the substance of the anima [i.e., of the soul], this is not the moment to say."[50]

The complex physiology of this passage is so obsolete that its very phraseology is meaningless without a commentary. In the first place, what are the animal spirits? This expression, once a technical term of physiology, survives only in colloquial English, and even there merely as a label of which the origin is known to few. In this phrase the adjective "animal" does not refer to lower creatures as opposed to man, but is used in its obsolete original sense of "pertaining to the soul," for which latter the Latin word is "anima," the Greek word "psyche" (πσυχή). "Psychical spirits" would best translate into the English of to-day either the original Greek expression "pneuma psychikon" (πνεῦμα ψυχικόν) or its Latin equivalent "spiritus animalis." But the expression "animal spirits" was for too long a time an English technical term to be superseded now. These animal spirits, that is, spirits of the soul, were not peculiar to man, but were possessed by lower creatures also; for neither the Latin word "anima" nor the Greek word "psyche" implied immortality, as the English word "soul" is now so commonly understood to do. Plato formally recognized a mortal and an immortal part of the human psyche;[51] and Aristotle admitted the existence in animals lower than man of the lower grades of psyche, and conceded the lowest grade even to plants.[52] The perfected animal spirits were of the very highest physiological importance, as their name implies, they being for Galen no less than "the first instrument of the soul,"[53] and thus assuming the lofty rank given by Aristotle to the native heat. For Galen the animal spirits were the medium of sensation and volition and were imparted by the ventricles of the brain to the spinal cord and nerves, the fibers of which were believed, accordingly, to consist of tubes in which the subtile animal spirits were contained, the bore of these tubes being too small to be visible.

We can now follow the quoted Galenic passage and trace the full significance of that entrance of the substance of the air into the heart which Galen repeatedly acknowledged, though sometimes grudgingly. According to Galen whatever air was taken into the heart had first been "concocted" in "the flesh of the lungs." Next, this aërial substance had been worked up in the heart with the vapor of the blood into vital spirits, and these became incorporated with the finer blood destined for the arteries. Moreover, as each arterial diastole was due to an active expansion of the arterial wall, at each diastole there became blended with the contents of the arteries still more of the substance of the air, which was sucked into the arterial skin through the countless pores of the bodily skin, these being too fine to permit bleeding. The vital spirits, thus formed and modified, were blended with the blood of the arteries and supplied to the body at large. A part of these vital spirits mounted with the blood into the carotid arteries. In the swine and the ruminants, notably in the calf, the branch given to the brain by each carotid artery breaks up at the base of the skull within the cranial cavity into numerous fine twigs, which form collectively a net-work, styled in the passage from Galen already quoted the "net-like plexus." This plexus is called by modern anatomists the rete mirabile. It was falsely assumed by Galen to exist in man. The plexuses of the two sides anastomose freely across the median line, and through them passes the entire blood supply of the brain; in the animals which possess them these plexuses seem the terminal branches of the vertebral arteries also. The small vessels of each net-like plexus reunite, and thus reconstitute the artery of the brain before this artery has pierced the dura mater. Galen regarded the net-like plexus as an organ of much importance intercalated in the course of the artery for the still further elaboration of the vital spirits, which, thus altered, were exhaled from the cerebral arteries into the cerebral ventricles.[54] In these ventricles the spirits attained their final perfection, becoming "completely animal," by the aid of still more of the substance of the air, which the diastole of the pulsating brain had drawn into its cavities directly from the nares through the numerous holes in the ethmoid bones. It is a striking fact in this connection that in some of the domestic animals on each side of the head the cavity of the nares is separated from the ventricular cavity of the brain by an exceedingly thin, though complex, partition: as may be seen on dissection, if the nares and the brain in situ be opened at the same time.

Now let Galen speak again as follows:—

"I have clearly shown that the brain is, in a way, the source of the animal spirits, watered and fed by inspiration and by the abundance supplied from the net-like plexus. The proof was not so clear as to the vital spirits, but we may deem it not at all unlikely that they exist, contained in the heart and arteries, they, too, fed by respiration mainly, but to some degree by the blood also. If there be such a thing as the natural spirits, these would be found contained in the liver and veins."[55]

The animal spirits were sustained, as we have seen, by three kinds of respiration which might be called pulmonary, cutaneous and cerebral. We may perhaps conjecture that it was largely Galen's acceptance of the two latter, the last especially, which enabled him sometimes to treat as doubtful the entrance into the heart of that air from which the vital spirits were held to be derived. Of the natural spirits he evidently made small account.[56]

A modern physiologist, musing upon all this, might see in the vital spirits a dim foreshadowing of oxyhæmoglobin; might see in the operation of the animal spirits a plainer foreshadowing of the nerve impulse of to-day.

Some account, such as the foregoing, of the very complex ancient doctrine of the spirits is indispensable for the study of Harvey; for that doctrine, more or less modified, was still the accepted medical doctrine of his time. After this renewed study of the ancients let us now return again to Harvey's note-book at the place where he takes up the question of the action of the lungs upon the blood otherwise than by the cooling and ventilation of the innate heat. It is necessary in his opinion that a further concoction of the blood into spirituous arterial blood should be accomplished by the fleshy parenchyma of the lungs in animals which require a warmer, thinner, "sprightly kind of aliment," as his own English styles it.[57] The probability of such a concoction is shown by the separation of excreta which indicate it, such as sputa, at the lung.[58] On the other hand, in such creatures as frogs and turtles the lungs are fleshless, spongy, and vesicular, and give no sign of blood or excreta. Hence we may infer that the pulmonary concoction of the blood, though it probably occurs, is limited to such animals as possess fleshy and sanguinolent lungs. Hence, again, it follows that the concoction aforesaid is a function of secondary importance, because it is not universal; and that the foremost function of the lungs is their motion, the windpipes constituting their most important part, rather than the parenchyma.[59] Two functions of the lungs, says Harvey, are affirmed by the medical authorities: first, the cooling and tempering of the blood; second, the preparation of natural spirits and air to be made into vital spirits in the heart. From all this there result the excreta of pulmonary concoction, which are something between water and air, and the fumes which are breathed out in expiration continually and incessantly. Harvey observes correctly that Realdus Columbus had declared himself to have discovered the continual motion of the lung to be the means whereby the spirits are prepared; the blood being thinned by the agitation, thoroughly mixed with air, beaten, and prepared.[60] Harvey also cites Galen as saying that the parenchyma of the lung concocts spirits out of air as the flesh of the liver concocts the blood.[61] On turning to the Galenic passage cited by Harvey one finds that it is out of the food that the blood is thus concocted by the liver.

Realdus Columbus, to whom Harvey refers, was the Italian anatomist who in 1559, fifty-seven years before the Harveian circulation was verbally announced, gave to the world the important truth that such blood as the right ventricle imparts to the left reaches the latter by traversing the pores of the texture of the lungs,[62] instead of the pores of the septum of the ventricles, as Galen had taught. The existence of these pores of the septum Vesalius had pointedly wondered at in 1543 and had emphatically doubted in 1555.[63] Four years later his former assistant and temporary successor, Columbus, flatly denied the existence of the pores. It was natural, therefore, that in the same book in which Columbus brought forward the path through the lungs to replace that through the septum he should declare that the vital spirits are made out of air worked up with the blood in the lungs and then merely perfected in the left ventricle. This doctrine was an important advance beyond what Galen had taught, viz.: that the spirits are but slightly prepared in the lungs out of air and then sent to the left ventricle to undergo their main preparation and to be worked up therein with the blood which had filtered into it directly out of the right ventricle.

Harvey's Views on the Use of the Circulation of the Blood

Подняться наверх