Читать книгу Stonehenge: Neolithic Man and the Cosmos - John North - Страница 11

Оглавление

1

INTRODUCTION

… the Discovery whereof I doe here attempt (for want of written Record) to work-out and restore after a kind of Algebraical method, by comparing those that I have seen one with another; and reducing them to a kind of Aequation: so (being but an ill Orator my selfe) to make the Stones give Evidence for themselves.

John Aubrey, Monumenta Britannica, ed. J. Fowles and R. Legg (1980), p. 32

The People

MOST of the achievements recorded in this book were those of people who lived between three and six thousand years ago—a relatively short period by comparison with the quarter of a million years that Britain has been inhabited. During that long earlier period, following the arrival of the first hunters in these northern latitudes, there had been gradual but massive fluctuations in climate, and long glacial periods during which it would have been necessary to retreat southwards. Much of what is known about the general pattern of existence of early peoples derives from evidence as to their diet, for example from middens, and hunters are in this regard by their very lifestyle elusive. The few hunter-gatherers who were cave dwellers—and especially those from temperate regions in the same period—tell us that there were other dimensions to their lives than subsistence alone, for they have left us carved and modelled figurines in stone and clay, including those notorious ‘Venuses’ who look as though they were meant as wives for Michelin man. Even from a time as early as the Leptolithic period (say 35,000 to 10,000 BC) there have been found in France not only many specialized tools and weapons, but spectacular cave art. Among surviving artefacts are bones scratched in ways suggesting that some sort of counting was taking place, and on the basis of the grouping of incisions into sets of around thirty, claims have been made that some of the counting was of the days of the Moon.

It is from the Leptolithic period that the first clear indication of ritualized burial in Britain has been found, that of the ‘Red Lady’ (or was it a young man?) found in a cave at Paviland on the Gower Peninsula in Wales. The body had been covered in red ochre—presumably to give it a semblance of life in death—and had been dressed in ornaments of ivory and shell. Radiocarbon dating puts this at well over twenty thousand years ago, when there was still a land bridge to the continent of Europe.1 Both shells and ochre have been found with similar Middle Palaeolithic burials in France and southeastern Europe, and indeed red ochre was to be used in the same way throughout Europe for many millennia thereafter.

The last of the long periods of glaciation lasted for about sixty thousand years, and drew to a close about eleven thousand years ago, even though there are signs of intelligent activity with stone implements from an earlier date. As the climate changed, and temperatures rose to levels more or less those of the present, northern Europe was drastically affected. Much is known of the environment of the time from the evidence of pollen and molluscs. The most striking changes were to the forests. First birch and pine made a recovery, and then hazel, elm, oak and lime moved into the older forests, with ash and alder following later. The population began to expand again after hunting and collecting methods were adapted to the new flora and fauna. Habits did not develop in the same way in all northern centres, but speaking generally, man tried to live near to large stretches of water at least in winter and early spring. Britain was linked to the continent by land until about 8000 BC. It is to this (Mesolithic) period that the first known human activity in the immediate neighbourhood of Stonehenge belongs. A series of pits was dug then a few hundred metres to the north of the stones, and they appear to have held massive upright posts of pine, for reasons that are entirely a matter for speculation.

As the forests developed, deer, elk, ox and boar moved northwards into them, and were hunted for food, but also for clothing, weapons, and implements that could be made from antler and horn. Long afterwards, ditches at places like Stonehenge were still being dug with antler picks. There are signs that the hunting way of life in Britain was giving way to farming by 4400 BC or thereabouts. It was long supposed that this change was a consequence of immigration by an alien people, but the matter is likely to have been more complicated. Hunter-gatherers had actually been opting for a relatively settled existence long before this new phase, a fact that would have made them more receptive to farming techniques than if they had been nomadic. It has even been claimed that they had previously indulged in a form of agriculture, namely the cultivation of the hazel for its nuts, but this is unproven. They had by this time certainly developed simple but efficient stone tools—unpolished axes and adzes, for example—and had proved themselves capable of sculpting animal figures and of decorating antler and bone tools, but the farming economy, which typically involved the cultivation of grain and the raising of such animals as sheep, cattle, swine, and goats, had much earlier beginnings, and those far away from Britain. Radiocarbon dating methods have pushed back the origins of settled agricultural communities in southwest Asia to well before 8000 BC, and similar communities may be as old in southeast Asia. Farming soon spread into the Mediterranean: it was practised in Thessaly, Crete and Cyprus even before the development of pottery there. It also made its way westwards along the Mediterranean coast, and again the domestication of sheep and goat evidently preceded pottery-making. By the sixth millennium BC, farming villages where pottery was made were present over the entire Aegean area, from whence farming made its way into the Balkan peninsula and the Hungarian plain, mostly following river valleys. The most important phase in the spread of farming to northern latitudes, however, took place early in the fifth millennium, when it moved northwards from the Hungarian plain, westwards along the Mediterranean coast, and in all directions along the Atlantic and Baltic coasts, where the population had become relatively stable. Finally it was carried inland to other parts of Europe by small groups, in particular lake-dwellers.

The main movement northwards is associated with a characteristic type of pottery, decorated with linear patterns, and usually known by its German name, Bandkeramik. The explosion of the Bandkeramik culture from the general area of the Hungarian plain is also characterized by its remarkable settlements, each with ten or twenty long wooden buildings, dwellings five or six metres wide and roughly eight times as long, with a roof supported by three rows of posts. A typical house was divided into three sections: the living quarters were in the middle, there was a granary at one end, and at the other there was a section of uncertain purpose that might have been a house temple for cult purposes. There is no clear evidence for animal stalls. In each village, one of the buildings was usually notably larger than the rest. As this culture spread westwards and northwards it finally made contact at length with settled communities along the Mediterranean and Atlantic coasts of western Europe, including Britain and Ireland. These coastal communities already had a certain cultural homogeneity, and the new farming habits did not exclude the old but supplemented them. Baltic peoples, for example, now learned how to grow grain and raise cattle, but they did so on a limited scale and continued to fish, to collect shellfish, and to hunt along the coast and inland as they had done before. Their contacts with the distant Danubian tradition are nevertheless evident from their pottery, from copper imports, and the style of their long houses.

By what route farming eventually reached southern Britain is not entirely clear. On one view it arrived through a migration of peoples from perhaps two or three directions, in particular from western France and from the northern and southern Netherlands. It has been suggested that some immigrant groups might have settled in Britain and coexisted for centuries alongside the older hunting population, the two merging only by slow degrees. Another hypothesis, at least as plausible as the first, is based on the fact that early dates for food production have been found from along the Irish Sea, in the neighbourhood of important centres of polished stone axe production that later sent their wares at least as far afield as Wessex. It is possible, therefore, that agriculture was brought to Britain by an Irish Sea population that had learned of it and acquired stock and skill through coastal contacts. Whatever the answer, by 4000 BC farming was established to some degree in places across the length and breadth of Britain and Ireland. Although the population was then still very small, it was growing steadily. There were of course important differences between forms of agriculture developed in different centres, differences that depended on history and environment, but there are such strong affinities between Britain and the continent of Europe from this time onwards that whether or not we are to believe in the migration of peoples in appreciable numbers it is impossible to doubt a continuing interchange of ideas.

The narrower focus of these pages is southern Britain, roughly south of a line from the Wash to the Bristol Channel, and the Neolithic ‘Windmill Hill’ culture and its successors down to the Bronze Age. (That culture takes its name from a hilltop site near Winterbourne Monkton and Avebury in Wiltshire, where it was first given archaeological recognition as a characteristic form.) (See Fig. 3.) The people concerned seem to have had a liking for chalk downlands, which were then covered in a dense forest, largely of oak and elm. The claiming of land from forest has been traced though the analysis of pollens that show, for instance, a decline in the numbers of elms and the corresponding advance of small light-seeking flora. It is possible that land clearance was at first only for animal fodder. The soil at least was light, and easy to cultivate with simple tools, such as those fashioned from antlers—it has even been suggested that deer were at times actually farmed for their antlers. The chalk also had the merit of yielding seams of flintstone, much used for cutting-tools. The farming communities of the region certainly left their mark on the land.

They left other marks on the landscape, in the form of ditches, enclosures of various sorts, defensive earthworks, tombs of various sorts, stone circles, carvings on stone, and so forth—but stones, earthworks, flints, antler picks, pots, even bronze and golden ornaments, are only the husks of human existence. Had these people left behind them even a rudimentary literature, we should no doubt think of them in a very different way. The intelligence and intensity of feeling that is evident from so many of their tangible remains, together with what is known of other non-literate cultures, makes it virtually certain that they had a rich and imaginative oral tradition, even though there is clearly no hope of our ever recovering it.

One of the theses of this book is that various astronomically guided rituals were in use by the time of the very earliest farming communities in Britain. This does not mean that such rituals necessarily followed the same routes as agricultural practices, or that either remained constant over long periods of time. There was a slow evolution in both, with many local variations in tradition. Problems of diffusion of influence are among the most difficult to solve, and once again, a movement of ideas does not necessarily mean a significant movement of populations. While it would be unwise to hazard many general conclusions on astronomical grounds alone, the evidence from this quarter is that the exchange of ideas between adjacent peoples was much greater than is usually recognized.

Alignments and Orientations

The overall aim of this book is to discover certain patterns of intellectual and religious behaviour through a study of archaeological remains that seem to have been deliberately directed in some way towards phenomena in the heavens. Much use will be made of a handful of words and ideas that are certainly not a part of everyday discourse but that are, even so, essentially simple. One of these, the notion of an astronomical alignment, is easily explained by reference first to the stars and then to the Sun and Moon (see also Glossary).

Each day, from a given place, if I can see an identifiable star rising, it will always seem to rise over the same point on the distant horizon. (This will be on its eastern half. It will culminate due south of the pole for anyone living in the northern hemisphere. And in view of the context, this qualification need not be repeated.) If it can be seen setting, the star will similarly always seem to set over a fixed point on the western horizon. If the star is sufficiently important to me, I might choose to remind myself of those points of rising and setting, perhaps by such irregularities as hill-tops or isolated trees; or I might choose to mark the directions in which they lie by setting up pairs of posts or other markers relatively near at hand. I should not have to revise the alignments of such markers materially during my lifetime, unless I wanted extreme accuracy of a sort that need not be considered here. (The word ‘alignment’ will usually be used here to refer to two or more terrestrial objects lined up on a celestial object, and not exclusively to sets of three or more terrestrial objects in line, which is an unnecessarily narrow archaeological usage.)

I might choose to direct my buildings—say the main axis of my church—in the same way. Reversing the order of discussion, however, is a hazardous undertaking: the fact that the orientation of someone else’s church happens to produce an alignment with an astronomically interesting event does not necessarily imply that the orientation was deliberate. Deciding between deliberate and accidental alignments is one of the central problems of this book.

Just as with the stars, I may notice the Sun rising at a recognizable place on the horizon, but in this case, as the days go by, that place will seem to change. In midsummer, the Sun in the eastern half of the sky will rise over its most northerly point of the horizon. It will attain its most northerly point of setting on the horizon’s western half at the same season. I could mark these directions as I did those of the rising and setting star; and as the year progressed and the days shortened, I should notice that those distant points of the Sun’s rising and setting move southwards, and that in midwinter they reach to their furthest points south. Again I could mark those southern extremes in one way or another. The markers (both near at hand, or one near and one distant) would then be aligned on four critical phenomena, namely midsummer and midwinter risings and settings of the Sun.


FIG. 1. The directions of the rising and setting Sun at Stonehenge, around 2000 BC, at the times of summer and winter solstice. The directions for the equinoxes are also marked, but are barely distinguishable from the (broken) east–west line. In all cases it is supposed that the upper limb of the Sun (first or last glint of the Sun) is seen on the distant natural horizon.

Approximately halfway between the directions of sunrise at precise midsummer and midwinter (that is, at the solstices), is the true direction of east; and true west is similarly more or less mid-way between the extreme directions of setting. The actual sizes of the angles depend on various factors, and in particular on the geographical place (or more precisely the geographical latitude) and on the irregularities of the actual horizon. In Fig. 1 the angles are drawn for Stonehenge at a nominal date of 2000 BC. The angles are not precisely divided into equal parts by the east–west line, for reasons explained more fully in Appendix 2.

As early as Neanderthal man—say thirty or forty millennia ago—there were burials aligned accurately east–west, which suggests that some or other celestial body was in the thoughts of those responsible for organizing the rituals of death. A grave excavated at L’Anse Amour, in Labrador, incorporated what were evidently ritual fires arranged to the north and south of the body, which was laid in an east–west direction. The east–west and north–south lines seem to have been key directions in the placement of later burials in many parts of the globe, but—religion apart—how is this tendency to be interpreted? East and west are the directions of the rising and setting Sun at the equinoxes, but they are not easily established, and the positions of the fires might rather be thought to suggest that in the Labrador case the critical directions were north and south, the line having perhaps been decided by the Sun’s midday position. A body with head to the north might have been regarded as lying towards the pole, the region where stars do not move. Granted more sophistication, east and west might have been regarded as midway between the Sun’s extremes of rising and of setting. Alternatively, the four cardinal points of the compass might have been settled not by reference to the Sun but to the daily rotation of the stars: a star culminates (reaches its highest point) on the meridian, just as does the Sun, and the meridian also bisects the directions of a star’s rising and setting. Culminations are not easy to settle precisely, since the altitude of the Sun or star is changing least rapidly then; but this does not mean that culmination was not uppermost in the thoughts of those who chose these directions for burials. Then again, at various periods of history certain bright stars have risen and set due east and west, so that alignment might have been on them. Skeleton directions that have so often been interpreted in solar terms can all too easily be reinterpreted in numerous ways, without our presupposing any particularly sophisticated techniques of observation. Which of these alternatives should one favour?


FIG. 2. The absolute extreme directions of the rising and setting Moon at Stonehenge, around 2000 BC, assuming that the Moon is fully visible, and just touching the natural horizon.

The evidence, based not on skeleton positions (which are often dubious) but on the forms of tombs and other structures, is that all of these ways of considering the cardinal points of the horizon, east and west, north and south, are likely to have been familiar in late Neolithic Europe. It is all too easy to become hypnotized by the idea of observation of the Sun and to forget the stars, but there is strong evidence from the period before the first phase of Stonehenge that observation of the stars was then important, perhaps even more important. In some early cultures from which written records survive—in Egypt, for instance—the direction of north was significant, and was found from observations of the stars circling the pole, or of a particular star near the pole at that time. (This was not the star that now serves us as the Pole Star, which in the remote past was well removed from its present position.)

The directions of the Moon’s places of rising on the eastern horizon and setting on the western also change with time, but the pattern of change is much more complicated than in the case of the Sun. The details are put aside for the time being (they are treated more fully in Chapter V and in some detail in Appendix 2), but again there are four absolute extremes of direction, just as with the Sun. The angle separating the northern and southern extremes of the Moon’s rising and setting is greater than in the case of the Sun. The angles in question, which depend as before on several factors, actually fluctuate in the course of time in a way that at first seems erratic. Alexander Thom and others have suggested, however, that the pattern of change lent itself to an analysis of quite extraordinary penetration by the people of the Bronze Age, or even earlier. For the time being, Fig. 2 will suffice to give an idea of the absolute extremes of lunar direction at the latitude of Stonehenge.

The earliest written astronomical records—notably the Egyptian, Babylonian, and Greek—reveal a preoccupation with risings and settings and periods of visibility generally. They show a concern with what was to be observed at the horizon, and with intervals of time between special events in the heavens, and their recurrences. This is not to say that there was necessarily a concern with directions towards points of rising and setting, for there are other ways of using horizon observations. Consider, however, a passage from a Mesopotamian astronomical text compiled early in the first millennium BC and known as MUL.APIN:

The Sun which rose towards the north with the head of the Lion turns and keeps moving down towards the south at a rate of 40 NINDA per day. The days become shorter, the nights longer. … The Sun which rose towards the south with the head of the Great One then turns and keeps coming up towards the north at a rate of 40 NINDA per day. The days become longer, the nights become shorter …

The MUL.APIN text is famous for its catalogue of stars and planets. Although distant in time and place from the Neolithic monuments of northern Europe, the quoted passage provides written testimony to observations of a sort that could well have been made there at a much earlier date. The shifting of the Sun’s place of rising over the horizon was in Mesopotamia related to the rising of stars, or to constellations, distinguished in turn as staging posts along the monthly path of the Moon round the sky. The people concerned worshipped the Sun in various ways, and took the entrance to the land of the dead to be where the Sun descends over the horizon. Many of the writings from which such beliefs are known, in particular the Gilgamesh epic, are much earlier than MUL.APIN, and even antedate the main structures at Stonehenge.

There appear to be no preferred alignments among the numerous Babylonian and Assyrian tombs excavated. In contrast, the alignments of Egyptian pyramids were settled accurately and deliberately, typically towards the four cardinal points of the compass. The interred ruler faced east, while his dependents faced west to the entrance to the kingdom of the dead. Confronted by such utterly different practices among two peoples who simply happen to have left written testimony of their attitudes to celestial affairs, it is on the whole wise to start with a clean sheet, and to base northern practices on northern archaeological remains. Whether there is an element in common to all of these peoples, in the form of a shared psychology, driving them all to found their religions on their common experience of the heavens, is highly questionable. There are certainly a surprising number of patterns of behaviour that many of them have in common, but they are beyond the scope of this book.

What if it should be possible to produce evidence that many prehistoric monuments were deliberately directed towards the rising and setting of Sun or Moon or star? Why devote so many pages to such a trite conclusion? There are some who will consider that the ways in which this was done were remarkable enough to be put on record, but others will naturally hope to draw conclusions as to motivation, whether religious or of some other kind. Does it not follow that the celestial bodies must have been objects of worship? Historians of religion who have come to this conclusion have rarely used orientations as evidence for it. On the other hand, many of those who have written about the alignment of monuments have taken for granted the idea that the motivation came primarily from the need to provide farmers with a calendar for the seasons. The religionists have interpreted isolated symbols found in the religious contexts of birth and death as self-evidently lunar or solar. They have claimed that worship of the Moon would have long preceded worship of the Sun, on the grounds that the tides and the menstrual cycle in women would have pointed to obvious links between the Moon, the weather, and fertility. The calendarists have argued from a supposed practical need, one that they find in evidence in early Greek texts relating the chief points of the agricultural year to events in the heavens. Both lines of discussion have rested far too heavily on intuition. There are a few tentative pointers to Neolithic and Bronze Age religious beliefs to be found from Stonehenge and its surroundings, but they belong to the end of the book, not the beginning.


FIG. 3(a) Britain and Ireland, showing (as small circles) the main henges as known at present. The rectangle covers the Stonehenge region as drawn in Fig. 3(b).


FIG. 3(B) Some of the principal prehistoric monuments of southern Britain, discussed in the following chapters. The rectangular grid (at intervals of 100 km) is that of the Ordnance Survey, and will provide a frame for more detailed maps of the Stonehenge and other regions in later chapters. Small squares mark modern towns.


FIG. 4 A star map for the year 3000 BC, here meant only to introduce the names of the brightest stars then visible from Wessex and mentioned in later chapters. The constellation names will be found in a similar figure in Appendix 2. It should be appreciated that star positions change with time, and that no single map can do justice to them over a period of a century, let alone two or three millennia. Other relevant astronomical matters will be introduced as needed, and the following points are added only for those interested in the type of representation adopted in the figure, which might be used to make rough estimates of visibility. It may be thought of as a movable diagram, in which the stars are moving and the shaded area is fixed. The aperture in the latter, bounded by the horizon circle, represents the visible region of the sky. Circles on the star sphere (such as the equator and tropics of Cancer and Capricorn) all appear as circles on this map, since it is in a projection known as stereographic. Stars are shown graded in size according to their brightness (thus Sirius is much the brightest star in the sky). Stars shown covered by the shading may move into view as the heavens rotate clockwise about the central point, representing the north celestial pole. Whether the stars will then actually be visible will depend on whether the Sun is visible or not. Star maps follow various conventions. Stars can be shown as they are seen looking out from the centre of the star sphere or as they would be seen from the outside of the sphere, looking inwards. The second convention, which is that used on a star globe, is the one adopted here. Had the figure been on a larger scale, scales of degrees could have been added, for instance the equator and the horizon (azimuths). The former graduations would have been uniform, but the latter not. (They would have crowded together more in the lower part of the figure.) The two points in which the tropic of Cancer (the smallest of the concentric circles) crosses the horizon represent the most northerly rising and setting points of the Sun. The most southerly points of its rising and setting are where the horizon meets the tropic of Capricorn (also concentric). The tips of the central cross are in the directions of the four points of the compass, north (below), east (left), west (right) and south (above).

Stonehenge: Neolithic Man and the Cosmos

Подняться наверх