Читать книгу Ошибка Коперника. Загадка жизни во Вселенной - Калеб Шарф - Страница 3
Комплекс Коперника
ОглавлениеВ III веке до нашей эры в довольно приятном местечке на Эгейском море – на заросшем виноградниками острове Самос, к западу от побережья современной Турции – греческого философа Аристарха осенила блестящая мысль[12]. Он предположил, что Земля вращается вокруг своей оси и движется вокруг Солнца, а пылающий солнечный шар поместил в центр небесной сферы. Идея была, мягко говоря, смелая: в те времена «гелиоцентризм» Аристарха вызвал такое же возмущение, как и в отдаленном будущем, когда эту идею возродил Коперник.
От трудов Аристарха до нас дошли лишь отрывки и косвенные цитаты, в основном касающиеся хитроумных геометрических выкладок, при помощи которых он доказывал, что Солнце значительно больше Земли. Однако очевидно, что это открытие подтолкнуло его к мысли, что Солнце представляет собой центр известной Вселенной и что звезды неимоверно далеки от нас. Едва ли можно требовать такого гигантского концептуального скачка в мировоззрении от простых смертных. Кроме всего прочего, чтобы совершить этот скачок, нужно было хорошо понимать суть понимания весьма специфического феномена под названием «параллакс».
Параллакс – явление в той же степени земное, в какой и небесное, и общее представление о нем довольно просто, так что читатель легко его усвоит. Закройте один глаз и поднимите руку с растопыренными пальцами так, чтобы видеть ребро ладони. Если помотать головой, то увидишь, как при перемене угла зрения в поле зрения попадают то одни, то другие пальцы. В этом и есть суть параллакса: это видимые изменения относительного местонахождения отдаленных предметов в зависимости от угла зрения. Чем дальше эти предметы, тем меньше видимые отклонения – тем меньше наблюдаемое угловое смещение между ними. Смелые выводы Аристарха, в частности, опирались на то обстоятельство, что звезды в ночном небе вообще не обладают параллаксом, они никогда не смещаются друг относительно друга. А значит, заключал Аристарх, если Земля не представляет собой неподвижный центр всего сущего, звезды так немыслимо далеки, что мы просто не можем измерить их параллакс при изменении положения Земли.
Это был мощный скачок. Более того, незадолго до обнародования идей Аристарха великий философ Аристотель уже отмел возможность, что звезды находятся заметно дальше планет, причем опирался он при этом в числе прочего на то же самое отсутствие параллакса. Доводы Аристотеля были основаны на логике и здравом смысле. Он опирался на более ранние представления о том, что Земля есть центр мироздания. Аргументация Аристотеля была очень проста: если у звезд вообще нет параллакса – они не смещаются друг относительно друга – значит, все они зафиксированы на каком-то слое окружающей нас неподвижной по своей природе небесной сферы.
Все это на первый взгляд совершенно логично – вот только сам Аристотель предпочитал иную космологическую модель (основанную на переработанных и дополненных идеях его наставника Платона): по Аристотелю Вселенная состояла из примерно пятидесяти пяти толстых прозрачных хрустальных сфер[13], концентрически описанных вокруг неподвижной Земли и содержащих планеты и звезды, которые и вращались вместе с ними. В подобной геоцентрической Вселенной мы были бы средоточием всех естественных движений, а звезды и планеты вечно описывали бы вокруг нас круги по мере скольжения и вращения хрустальных сфер.
Читатель, вероятно, спросит, зачем Аристотелю для космологической модели потребовалось целых пятьдесят пять хрустальных сферических слоев. Отчасти дело в том, что ему необходимо было обосновать всю систему небесной механики, передачу сил, которые обеспечивали трение оболочек друг о друга и заставляли их двигаться – всю сложную систему движений и устройств, благодаря которой светила перемещались бы по небесам. Эта конструкция должна была дать ответ и на другой важнейший вопрос, стоявший перед прото-космологами тех времен: планеты, в отличие от звезд, описывают в небе достаточно сложные траектории.
Эти затейливые перемещения составляли основную часть загадки, решить которую Аристарх, а затем и Коперник пытались при помощи смещения Земли с центральной позиции. Само слово «планета» образовано от греческого словосочетания, обозначающего «блуждающая звезда», а наши планеты, светящие ярким отраженным светом, и в самом деле блуждают. Они не просто перемещаются относительно звезд на видимом небосклоне, но и заметно меняют положение от ночи к ночи, иногда движутся в обратном направлении, закладывают вселенские виражи в течение нескольких месяцев и лишь затем трогаются дальше. Некоторые из них, например, Меркурий и Венера, ведут себя еще капризнее: иногда их вообще не видно. И даже скорость движения планет по небесам, похоже, то растет, то уменьшается – и одновременно меняется еще и яркость этих проказниц! Казалось бы, когда Аристарх предложил свою гелиоцентрическую систему, все должны были вздохнуть с облегчением, поскольку если Земля движется по собственной орбите вокруг Солнца, это мгновенно решает задачу загадочного возвратного движения планет (в астрономии есть особый термин «попятное движение»). При такой конфигурации причина подобного странного поведения крайне проста: когда Земля движется по кругу, наша точка зрения постоянно меняется. Естественно, время от времени меняется и направление нашего движения относительно той или иной планеты, и расстояние до нее, вот почему ее наблюдаемая яркость то увеличивается, то падает.
Это была красивая, ладная конструкция, основанная на фактах, – и многим она была словно кость в горле. Если Земля движется, значит, у звезд должен быть заметный параллакс: ведь они не так уж далеко. А помимо отсутствия наблюдаемого параллакса, смещение Земли с престижной центральной позиции было богохульством, мало того – смешно было даже подумать, что средоточие нашего существования лежит не в центре всего, так что бедному Аристарху крепко досталось.
Другая причина противодействия гелиоцентризму, скорее всего, коренится в общем неприятии идей, намекающих на множественность обитаемых миров. В противоположность единомышленникам Платона и Аристотеля, отстаивавшим идею божественного творения единственной в своем роде Земли, греческие мыслители наподобие Демокрита и Эпикура предлагали модель реальности, основанную на представлении о неделимых частицах и пустоте – об атомах и пространстве. Тогдашние атомы были непохожи на атомы в современном понимании этого слова: они представляли собой философскую концепцию единиц материи, таких маленьких, что их нельзя было разглядеть, твердых, однородных внутри, разного размера, веса и формы, поскольку с их помощью приходилось описывать бесконечное множество структур. Идея атомов натолкнула этих философов на мысль, что Земля, возможно, не уникальна. Напротив, должно существовать бесчисленное множество обитаемых миров, заключенных в некоем абстрактном пространстве и времени (теперь-то нам понятно, что речь шла о параллельных Вселенных). Неудивительно, что идея множественности миров не пришлась по вкусу последователям платоновской или аристотелевской философской школы.
В итоге за несколько десятков лет после Аристарха множество естествоиспытателей предложили геоцентрическое «решение»[14], позволяющее объяснить досадно неудобное движение планет по небосводу и при этом сохранить уникальное центральное место Земли в мироздании. Их решение дилеммы движения светил, вероятно, зародилось почти век спустя после столкновения Аристарха и Аристотеля, на рубеже II века до н. э., когда эту идею выдвинул астроном и геометр Аполлоний Пергский. Позднее это объяснение было изложено в трудах Клавдия Птолемея. Грек Птолемей был римским гражданином и жил в Египте, который находился тогда под римским владычеством, примерно три века спустя после Аристарха. Он был выдающимся мыслителем, написавшим множество значительных трудов на самые разные темы, в том числе по астрономии, географии, астрологии и оптике. А главное – он оставил нам астрономический трактат, известный под названием «Альмагест»[15], который заложил основы космологических представлений, господствовавших в течение следующих 1400 лет.
Согласно системе Птолемея, Земля неподвижно закреплена в центре Вселенной. Вокруг нее движутся Луна, Меркурий, Венера, затем Солнце, а после него – Марс, Юпитер, Сатурн и неподвижный узор из звезд, и все это вращается по круговым орбитам. Чтобы привести эту конструкцию в соответствие с запутанными движениями, наблюдаемыми на небесах, Птолемей добавил хитроумную систему дополнительных движений по особым сферам, которые получили название «деференты» и «эпициклы». Парадоксально, но факт: их центр не совпадал с Землей (причем эта особенность, похоже, ускользала от внимания рьяных геоцентристов на протяжении всех этих столетий).
Согласно изобретательной модели Птолемея, планеты и Солнце двигались по относительно небольшим идеальным окружностям – эпициклам, которые, в свою очередь, двигались по деферентам большего радиуса, а те вращались вокруг некоей точки, не совпадающей с Землей. Конечный результат в общем и целом обеспечивал объяснение всех петель и зигзагов, которые описывают светила.
Рис. 2. Упрощенная схема геометрической конструкции, при помощи которой Птолемей объяснял движения светил согласно геоцентрической модели. Марс следует по круглой орбите вокруг малого эпицикла, которая, в свою очередь, движется по более масштабному круглому деференту. В результате нам кажется, будто Марс описывает на небосводе зигзаги и при этом то приближается, то удаляется от Земли.
Для этого требовалось, чтобы система Птолемея очень точно соответствовала данным наблюдений за светилами. Поэтому Птолемей тщательнейшим образом вычислил размеры и местоположение на небосклоне всех до единого деферентов и эпициклов, дабы предельно приблизить модель к реальным извилистым тропам известных светил.
Но даже при столь тонкой подгонке в системе таились погрешности: с годами астрономы то тут, то там выявляли расхождения[16] со своими наблюдениями. Планеты либо спешили, либо опаздывали занять предсказанное место на небесах, правда, эти погрешности были так малы, что почти никого не настораживали. Налицо была вполне приемлемая модель мироздания и движения Солнца, Луны и планет – геоцентрическая, основанная на незыблемых постулатах геометрии, совпадающая с представлениями великих философов древности. Эта модель в равной мере устраивала и математиков, и богословов.
В дальнейшем, в Средние века, когда идеи Птолемея были отточены еще больше и внедрены в религиозно-философские учения западного мира, они оказались неразрывно сплетены с общей системой концепций. Подобно артериям, которые обеспечивают кровоток, геоцентрические сферы с эпициклами стали важнейшей частью механизма наблюдаемой Вселенной. Тот, кто усомнился бы в геоцентрической космологии, в сущности, усомнился бы во всей совокупности научных, философских и религиозных представлений, а в том числе и в могуществе правящей власти с ее институтами.
Невзирая на все значение геоцентризма, за четырнадцать веков, миновавших от Птолемея до Коперника, так и не сформировалось единой, общепринятой детальной картины вселенской механики. Эта несообразность – один из интереснейших аспектов развития «космологии» или, по меньшей мере, развития модели нашей Солнечной системы. За все это время различные мелкие идеи и теории и при необходимости, и удобства ради пытались согласовать друг с другом – этакий вселенский конструктор, который всякий собирает по своему вкусу. Все зависело от того, какую Вселенную хотел получить тот или иной мыслитель – строго математическую или отвлеченно-философскую. А все эти идеи, в свою очередь, восходили к разнообразным гипотезам и предложениям множества давно почивших греческих философов.
Не менее важно для этой космологической истории и то обстоятельство, что характеристики моделей очень сильно зависели от точности доступных средств измерения. Аристотель и Аристарх не ленились добиваться максимальной точности астрономических наблюдений, однако их средства были жестко ограничены – они располагали лишь невооруженным глазом и относительно простыми инструментами для оценки углов и расстояний. А подобные ограничения означали, что на самом деле у мыслителей не было ни малейшего представления о том, каков подлинный параллакс движения звезд, а поскольку они не могли измерить никакой заметной величины, то и предполагали, что параллакс равен нулю. Данные о движении светил как таковом тоже были очень неточными, в познаниях оставались пробелы, которые и позволили Аристотелю и Птолемею втиснуть в картину мироздания свои геоцентрические модели со все более и более сложными геометрическими конструкциями. Да, эти модели были далеки от совершенства, однако наблюдениям человечества над происходящим на небосклоне до 1500 года попросту не хватало точности, чтобы их опровергнуть.
Так что к концу XV века особых успехов в создании более совершенной модели движения Земли, планет и звезд человечество не достигло, особенно если учесть, что нужно было еще соответствовать религиозно-философским доктринам западного мира. В сущности, можно, пожалуй, сказать, что на взгляд современного ученого средневековые космологические модели были беспорядочны и внутренне противоречивы. Несомненно, настало время решительных улучшений. Оставалось лишь дожидаться, когда появится нужный человек.
* * *
Николай Коперник родился 19 февраля 1473 года. Область Пруссии, где он вырос, незадолго до этого отошла к Польше. Копернику повезло – он родился в образованной обеспеченной семье и получил великолепное образование, в том числе обладал всеобъемлющими познаниями в философии (нечего и говорить, что он подробно изучил труды древнегреческих мыслителей), математике и естественных науках, в частности, в астрономии. Кроме того, он от природы обладал неутолимой любознательностью и, судя по всему, всю жизнь не чурался тяжелой работы и в дополнение к естественнонаучным изысканиям оставил труды по политологии и поэтике.
Продолжать обучение он отправился в Италию, где его все больше и больше интересовали астрономические наблюдения, особенно измерение отклонений движения Луны и планет от системы Птолемея. Об этих отклонениях прекрасно знали и другие исследователи того времени, однако изобретательному Копернику особенно хотелось в поисках ответов на эти вопросы выйти за пределы общепринятых представлений и найти более простое и точное решение, чем модель Птолемея, изобретенная уже так давно.
В самом начале XVI века Коперник набросал заметки к своей будущей гелиоцентрической модели Солнечной системы – это была книжка в сорок страниц, получившая название «Commentariolus», «Небольшой комментарий». При жизни Коперника ее официально не публиковали, ходило несколько списков, вызывавших интерес и уважение современников и, несомненно, суровые взгляды тогдашнего научного сообщества. Комментарий и в самом деле небольшой, однако содержит семь важнейших провидческих постулатов[17].
Вот каким представало Копернику мироздание, если изложить его постулаты современным языком. Единого центра Вселенной не существует. Центр Земли – не центр Вселенной. Центр Вселенной расположен поблизости от Солнца[18]. Расстояние от Земли до Солнца по сравнению с расстоянием до звезд пренебрежимо мало, вот почему у звезд не наблюдается параллакса. Наблюдаемое ежедневное вращение Солнца и звезд по небосклону определяется вращением Земли, а сами Солнце и звезды неподвижны. Ежегодные изменения движения Солнца по небесам на самом деле объясняются тем, что Земля вращается вокруг Солнца. И, наконец, петли, описываемые планетами (попятное движение), также вызваны движением Земли. Это так радовало Коперника, что он добавил приписку: «Таким образом, одного лишь движения Земли достаточно, чтобы объяснить очень много небесных неправильностей».
В этих фразах заключены истоки колоссального переворота в мышлении человечества. Опираясь практически исключительно на рассуждения по дедукции, Коперник закрутил нашу драгоценную Землю и отправил ее блуждать по Вселенной. Но хотя распространение «Комментария» и обеспечило Копернику определенную научную репутацию, он лишь несколько десятилетий спустя пересмотрел свои записи и подробно разработал математическую сторону своей теории, подготовив ее к публикации – правда, судьба распорядилась так, что публикация состоялась лишь посмертно, в 1543 году. Так появился великий трактат «De revolutionibus orbium coelestium» – «О вращении небесных сфер». Почему Коперник столько медлил, остается исторической загадкой[19]. Можно было бы предположить, что существенной причиной такой удивительной нерешительности был страх перед предстоящей борьбой с церковниками и научным сообществом, которые и так сотрясались под натиском Реформации.
Эта модель перетряхнула небесную механику и придала ей новые очертания, однако и она была весьма несовершенной. Как нам теперь известно, несмотря на то, что теперь Земля, Солнце, звезды и планеты оказались на нужных местах друг относительно друга, Коперник все же приписывал им некоторые свойства, из-за которых его модель соответствовала астрономическим наблюдениям лишь с натяжкой. В сущности, Коперник отмел не все сложные геометрические конструкции Птолемея, а лишь некоторые из них. Например, он по-прежнему опирался на эпициклы, чтобы лучше подстроиться под наблюдаемые ежегодные перемещения планет и Солнца.
Физическая основа теории стала значительно лучше, однако применение модели на практике все так же оборачивалось кошмаром по той простой причине, что Коперник цеплялся за набор представлений, восходивших еще к Аристотелю. Он предполагал, что все движения светил – будь то по эпициклам или вместе с огромными хрустальными сферами – происходят по идеальным окружностям и с постоянной скоростью. Модель соответствовала классическим представлениям, была очень красивой с геометрической точки зрения и совершенно ошибочной, но Коперник об этом и не догадывался. Тем не менее он заронил зерно переворота в научной мысли – и какого переворота!
* * *
За несколько десятилетий сразу после публикации «De revolutionibus» Коперника появилось множество новых противников птолемеевой Вселенной – и множество столь же рьяных ее поборников. Некоторые из противников дорого заплатили за свои воззрения, например, Джордано Бруно[20]. Этот монах-доминиканец родился в 1548 году, спустя пять лет после смерти Коперника. Научные и философские изыскания привели его к тому, что он стал сторонником не только гелиоцентрической системы, но и представления о бесконечности Вселенной, о том, что Солнце – всего-навсего одна из звезд и что громада всего сущего наверняка содержит в себе множество иных обитаемых миров. Бруно опирался на идеи древнегреческих атомистов и разработал модель мироздания, намного опережавшую его время. Однако Бруно занял весьма провокационную позицию и по другим религиозным вопросам, это привлекло пристальное внимание властей, и в 1600 году инквизиция сожгла бедного Бруно на костре за ересь.
Примерно в это же время состоятельный и знатный датский астроном Тихо Браге[21] делал колоссальные успехи в наблюдениях и записях движения светил. Телескопов тогда еще не было, и Тихо Браге пользовался лишь своими острыми глазами и хитроумными измерительными устройствами, чтобы следить за небесной механикой: он изобретал новые модификации квадрантов, секстантов, астролябий, чтобы измерять углы и координаты с достойной изумления точностью. Однажды ночью – дело было в 1572 году, когда Тихо Браге исполнилось 26 лет, – на его глазах в ноябрьском небе Западной Европы зажглась новая звезда[22]. Никакого параллакса Браге не зафиксировал, однако в предыдущие ночи этой звезды точно не было, и он пришел к выводу, что Вселенная не незыблема, она способна меняться, причем очень резко.
Сейчас мы понимаем, что Браге наблюдал вспышку сверхновой – в данном случае это был мощный взрыв набравшего критическую массу белого карлика, звездного остатка, расположенного примерно в 8000 световых годах от Солнечной системы. Благодаря наблюдению этого важнейшего явления западные астрономы стали с новыми силами изобретать усовершенствованные способы измерения положения и яркости объектов и искать новые объяснения их поведению. Сам Тихо Браге мучительно пытался сочетать или по крайней мере примирить птолемееву космологию с моделью Коперника. Он представил собственную, «тихоническую» гео-гелиоцентрическую модель, в которой Солнце и Луна двигались по орбите вокруг Земли, однако все остальные планеты вращались вокруг Солнца.
При всей своей надуманности эта модель самого Тихо Браге вполне устраивала, поскольку параллакса у звезд он так и не зафиксировал, а это легко объяснялось тем, что «вялая» Земля оставалась неподвижной. Мало того, эта модель позволяла найти компромисс со сторонниками мировоззрения Коперника, которые относились к своим научным представлениям очень нервно. Однако тщательность, с которой Браге вел астрономические наблюдения, заложила основу для следующего важнейшего шага на пути научного прогресса – и этот шаг сделал немец Иоганн Кеплер, одно время работавший помощником Браге.
За четыре года до встречи с Браге, которая состоялась в 1600 году, Кеплер опубликовал трактат, в котором с жаром отстаивал систему Коперника: этот трактат называется «Mysterium Cosmographicum» – «Космографическая тайна». Интересно, что Кеплер был не только одержим чистой математикой, но и глубоко религиозен и считал, что все, что определяет положение и движение небесных тел, подчиняется Господней воле. Это отчасти объясняет, почему его первая гелиоцентрическая модель мироздания представляла собой правильные многогранники, вписанные друг в друга – это было очень красиво с геометрической точки зрения, однако не имело никакого отношения к действительности.
Кеплер прожил очень трудную жизнь, и его научная биография не менее сложна. Он был готов трудиться до изнеможения, особенно на ниве науки, и оказался весьма плодовитым ученым. Исследования оптики натолкнули его на открытие фундаментального закона о том, что яркость объекта обратно пропорциональна квадрату расстояния до него. В 1604 году произошла еще одна вспышка сверхновой, и Кеплер, как и Браге, сделал вывод, что в отсутствие измеримого параллакса аристотелева модель вечной и неизменной Вселенной, вероятно, неточна. А главное – Кеплер оказался в уникальном положении в том, что касается объяснений, почему системы Птолемея и Коперника неточно предсказывали поведение светил. В конце 1601 года Тихо Браге безвременно скончался от лихорадки, и Кеплер унаследовал[23] точнейшие, подробнейшие таблицы позиций и отклонений светил, составленные великим астрономом. Некоторые источники полагают, что Кеплер весьма изобретательно подстроил все так, чтобы заполучить эти записи прежде, чем имущество зажиточного астронома разделят между наследниками. Кеплер уже некоторое время сотрудничал с Браге и точно знал, чего хочет. Беспрецедентные данные, собранные Тихо Браге, позволили Кеплеру продолжать изучать болезненный вопрос о точном предсказании движения светил в тех случаях, когда в уже готовых моделях зияли дыры и положение небесных тел время от времени не соответствовало прогнозам. В те или иные ночи планеты ни с того ни с сего не показывались в тех местах, которые полагались им согласно моделям, и это была довольно-таки серьезная проблема, бросавшаяся в глаза.
Когда Кеплер решил основательно изучить эти обширные данные, то сосредоточился в первую очередь на наблюдениях планеты Марс. Думаю, то, что он выбрал именно Марс, – пример величайшего научного везения за всю историю западной мысли, даже если к такому решению Кеплера успел подтолкнуть Браге, что вполне вероятно.
Из шести известных Кеплеру планет Марс хуже всех вписывался в прогнозы. В сущности, Кеплер доказал, что если Земля лежит в центре всего сущего, Марс никак не может двигаться по фиксированной орбите. Далее он сделал предположение, которое прежде не учитывалось ни в одной модели Вселенной: он выдвинул гипотезу, что скорость небесных тел непостоянна. Сделав это допущение, он распахнул новое окно в природу вещей: ведь если предметы движутся с переменной скоростью, может оказаться, что их орбиты представляют собой не идеальные окружности. Задача была не из легких: на то, чтобы получить ответ, у Кеплера ушло восемь лет исследований.
Кеплер исследовал различные формы орбит; яйцевидные овалы подходили, но не очень хорошо, другие очертания его тоже не устраивали. Тогда он попробовал рассчитать орбиты строго математическими средствами, получил решение, отверг его, но вскоре вернулся к той же самой идее, однако уже интуитивно. В конце концов он понял, что все орбиты планет принадлежат к так называемым коническим сечениям[24]. В этот класс кривых входят и окружности, и параболы, и гиперболы, а главное – эллипсы.
Как мы теперь понимаем, ошибки в прогнозировании поведения Марса согласно модели Коперника возникали потому, что его орбита сильнее всего отличается от окружности по сравнению с Венерой, Землей, Юпитером и Сатурном – то есть она самая эллиптическая из них. Из планет, которые были известны Кеплеру, более вытянутая орбита только у Меркурия, но Меркурий труднее наблюдать, поскольку он близко к Солнцу. Кеплер сделал вывод, что при движении по эллиптической орбите планета, как и любое другое тело, замедляется в дальней точке и ускоряется в ближней. Именно этих вариаций и недоставало, чтобы избавиться от досадных ошибок в прогнозах поведения Марса.
В 1609 году Кеплер свел свои идеи воедино и опубликовал трактат «Astronomia Nova» – «Новая астрономия», в котором представил два из своих знаменитых законов движения небесных тел: орбита любой планеты представляет собой эллипс с Солнцем в одном из фокусов, а если провести линию между планетой и Солнцем, она будет при движении планеты заметать равные площади за равные промежутки времени.
Кроме того, Кеплер обнаружил, что между Солнцем и планетами, вероятно, существует какое-то неизвестное взаимодействие (теперь мы назвали бы его силой). Это была революционная концепция, и хотя все это было изложено в терминах, отдававших мистицизмом, Кеплер отважился даже предположить, что подобное взаимодействие ослабевает с удалением от Солнца. Потому-то дальние планеты должны двигаться медленнее – и так оно и есть.
* * *
В этом месте возникает соблазн броситься вперед очертя голову, поскольку дальше важные события стремительно сгустились. Всего через год после публикации трактата «Astronomia Nova», в 1610 году, Галилео Галилей[25] при помощи телескопа наблюдал периодическое движение ярчайших спутников Юпитера и фазы Венеры. Все эти наблюдения вызвали жестокое столкновение между космологическими моделями, поскольку представили еще более убедительные доказательства, что гелиоцентрическая модель точнее геоцентрической, так что Галилею пришлось вступить в борьбу с общепринятыми представлениями того времени. Однако в картине мироздания появились и другие черты, зародившиеся в трудах Кеплера – черты не менее важные для нашего понимания собственной роли в мироздании.
Если все планеты подчиняются одному закону и движутся по эллиптическим орбитам, и эти орбиты не обязательно лежат в одной плоскости вокруг центральной массивной звезды, есть вероятность, что существует множество различных вариантов движения планет и их систем, которые, тем не менее, подчиняются законам Кеплера (и законам физики, которую мы вскоре будем называть ньютоновой). Сомневаюсь, что в то время кто-то об этом подозревал, однако именно тогда распахнулась дверь во Вселенную куда более изобильную и разнообразную, чем рисовало даже самое смелое воображение атомистов и плюралистов минувшего. Но на этом сюрпризы, таившиеся в наблюдениях Галилея, отнюдь не кончились. При помощи телескопа он сумел обнаружить очень тусклые звезды, не различимые невооруженным глазом. Поглядев на полосу Млечного Пути, равномерно-туманную на вид, Галилей, к собственному изумлению, обнаружил, что на самом деле она состоит из звезд – столь многочисленных и крошечных, что для невооруженного глаза они сливались воедино. Эти наблюдения не так знамениты, как другие открытия Галилея, а жаль: ведь именно они впервые явили человечеству подлинный размах мироздания.
Мысль о том, что в небе есть невидимые глазу тела, подобно сверхновой Тихо Браге, вызвавшей настоящую сенсацию, радикально противоречили космологическим представлениям того времени. Эти наблюдения вместе с открытием Антони ван Левенгука, сделанным несколько десятков лет спустя, – речь идет об открытии густонаселенных микроскопических Вселенных, заключенных в каждой капельке воды и в человеческой мокроте, – приподняли непрозрачный доселе покров над реальностью во всей ее колоссальной сложности и глубине. Однако эти важнейшие откровения, позволившие нам заглянуть в подлинные глубины природы – и вовнутрь, и вовне, не привели к таким ожесточенным спорам, как простое смещение нашей планеты с центрального места в мироздании.
Поначалу волнения поднялись в основном в лагерях церковников и власть имущих. В сущности, ни Галилей, ни Кеплер, похоже, не считали, что гелиоцентризм подрывает статус Земли. Напротив, он означал, что мы находимся не в самом низу планетной «пирамиды», а занимаем достойное и даже привилегированное место на орбите среди орбит других планет. Парадоксально, но факт: сам Кеплер писал, что это, по его мнению, означает, что Земля находится как раз посередине планетных сфер (то есть орбит): Меркурий, Венера и Солнце находятся внутри ее сферы, а Марс, Юпитер и Сатурн – вовне. И все же столь твердая уверенность в собственной значимости в общей схеме мироздания, по сути дела, смягчила удар, который наносили все новые и новые свидетельства подлинного величия природы – от микрокосма до макрокосма.
* * *
Шло время, и судьба распорядилась так, что в январе 1642 года умер Галилей, а в декабре того же года родился Исаак Ньютон. Полное жизнеописание Ньютона, как и биографии Коперника, Бруно, Браге, Кеплера и Галилея, необычайно богато событиями. Однако для нас самая важная его глава начинается с публикации в 1687 году фундаментального труда «Philosophiæ Naturalis Principia Mathematica» – «Математические начала натуральной философии», который часто называют просто «Principia» или «Начала». В этом тексте Ньютон не только формулирует математические законы движения и определяет понятия инерции, импульса, силы и ускорения, но и провозглашает закон всемирного тяготения.
Ньютон предположил, что притяжение тел друг к другу можно описать как силу, которая растет с увеличением массы, однако слабеет пропорционально квадрату расстояния. Из этой гипотезы он вывел математическое доказательство эмпирических законов Кеплера, впервые показав, что законы, управляющие движением планет, опираются на фундаментальную физику. Кроме того, он проанализировал движение Луны, траектории комет и гравитационные взаимодействия в системах, включающих больше двух тел. Он отметил, что, несмотря на явно гелиоцентрическую природу Солнечной системы, Солнце тоже вращается вокруг переменной точки – центра масс или точки равновесия всех тел в системе. Он даже определил, что эта точка расположена поблизости от наблюдаемой поверхности Солнца, достаточно далеко от его ядра, и что такое смещение в основном вызвано гравитационными громадами Юпитера и Сатурна (современные астрономы прекрасно знакомы с этим обстоятельством, поскольку подобное смещение в других звездных системах – один из главных признаков существования так называемых экзопланет, то есть планет, находящихся вне нашей Солнечной системы, с которыми мы познакомимся в следующей главе. Мы измеряем орбитальное движение звезды вокруг подобной центральной точки, поскольку оно свидетельствует о присутствии невидимых, но массивных миров).
Ньютон был личностью незаурядной и сложной, с глубокими религиозными убеждениями, и для него такое красивое физическое объяснение движения небесных тел было доказательством существования высшего божественного разума, который управляет траекториями тел, исполняющих свой танец со слаженностью часового механизма. Для других мыслителей следующего столетия – например, для Пьера-Симона Лапласа, великого французского математика и физика, – это свидетельствовало об обратном. Значит, Вселенная не нуждается в направляющей длани, в предопределенных путях и конфигурациях – лишь имманентно присущие ей физические законы определяют, где и когда очутится то или иное тело. Однако Лаплас также полагал, что, если вооружиться этими законами и полными знаниями о положении и движении всех предметов в любой момент времени, будешь знать и прошлое, и будущее. Пусть во Вселенной и нет направляющей длани, зато есть детерминизм[26].
* * *
В течение пяти последовавших веков наблюдения за окружающим миром становились все точнее и точнее – как и доступный математикам и физикам научный аппарат. Мистико-философское обоснование тех или иных природных явлений уступило место применению более простых и общих законов. В то же время наши познания о составе и устройстве Вселенной все больше обогащались, все сильнее ширились представления о невероятном размахе и разнообразии явлений, которые до этого таились от нас или в глубине веков, или из-за неуловимости своих признаков. Все больше философов и ученых соглашались с мыслью о том, что звезды не просто очень далеки от нас, но и рассеяны в пространстве колоссального объема. А крепнущее ощущение огромности мироздания заставило лучшие умы вернуться к представлениям о бесконечном космосе, выдвинутом еще древнегреческими атомистами.
Научное представление о нашей роли и значении в мироздании также претерпевало изменения с самых разных сторон. Вскоре после Ньютона голландский ученый Христиан Гюйгенс[27] изложил свои соображения о возможности внеземной жизни – он сделал это перед самой смертью, в 1695 году. Гюйгенс был убежден во «множественности миров» и, наблюдая в телескоп планеты и даже спутники Юпитера и Сатурна, не сомневался, что видит перед собою изобильные водой, гостеприимные угодья. Ему представлялось, что жизнь, подобная земной, неизбежно должна зародиться повсюду. Разумеется, такое представление разделяли далеко не все, и вспыхнули жаркие споры о нашем месте среди звезд.
В это же время разгорелись споры и по другому вопросу – бурные и на удивление недооцененные научные дебаты[28], начавшиеся на рубеже XVII и XVIII веков и завершившиеся лишь в начале семидесятых годов ХХ века. Благодаря фундаментальным открытиям в физике, которые сделали Кеплер, Галилей, Ньютон, Лаплас и другие ученые, стало ясно, что наука должна тщательно изучить происхождение Солнечной системы.
Откуда взялись Солнце и планеты, если они возникли не по воле Божьей, а в результате действия законов природы? Как я вскоре покажу, ответ на этот вопрос получился весьма неожиданным и удивительным образом дополняет более современные споры о нашем происхождении и значении. Однако прежде нам следует вернуться в настоящее и посмотреть, как сейчас развивается краткая история представлений о космосе.
* * *
К концу XIX века наши представления о Вселенной претерпели серьезные изменения и охватили куда более обширную территорию. Стало уже общепринятым, что звезды невероятно далеки от Солнца, – астрономы подтвердили этот факт, добившись, наконец, успеха в измерении едва заметных параллаксов, вызванных годичным перемещением Земли в пространстве. Кроме того, в нашей Солнечной системе открыли новые планеты – от Урана и Нептуна, таящихся в темных глубинах космоса, до космических тел меньшего размера, однако значительной массы, например, Цереры и Весты[29], расположенных сразу за орбитой Марса.
А исследования спектра космического света начали приоткрывать завесу тайны над химическим составом внеземных объектов, в том числе над составом Солнца, и в результате, в частности, был открыт гелий[30].
Однако оставались без ответа другие важнейшие вопросы: имеет ли Вселенная пределы в пространстве и даже во времени? Ограничивается ли она россыпью звезд, которую мы именуем Млечным Путем, или другие маленькие туманные пятнышки, например, Андромеда, представляют собой своего рода «островные Вселенные» – другие галактики?
В первые три десятилетия ХХ века произошел настоящий переворот в науке и технике – человечество совершило череду сенсационных открытий. Историю этой научной революции пересказывали уже миллион раз: теория относительности Альберта Эйнштейна, измерение подлинных масштабов космоса и понимание природы галактик, зарождение и развитие квантовой механики. Все это породило радикально новые представления о природе, которые позволили объединить свойства и огромного, и микроскопического, и быстрого, и высокоэнергичного – и увидеть изнанку самой реальности. Однако эти открытия неизбежно вошли в противоречие с общепринятыми представлениями о нашем месте в мироздании – и опровергли их.
Из гелиоцентрической модели Коперника следовало, что Вселенная должна выглядеть более или менее одинаково независимо от того, на какой планете стоишь. Очевидное обобщение гласит, что вся Вселенная должна выглядеть более или менее одинаково независимо от того, где находится наблюдатель – в нашей Солнечной системе или в какой-то другой, в нашей Галактике или в десятках миллионов световых лет от нас. Примерно после 1915 года для Эйнштейна это предположение стало вполне приемлемым с философской точки зрения и позволило применить его общую теорию относительности к Вселенной в целом, что привело к появлению так называемого космологического принципа[31].
Здесь нам придется прибегнуть к несколько более ученым словам: согласно этому принципу Вселенная гомогенна. Да, в ней может быть множество мелких асимметрий, например, скопления звезд и галактик, однако независимо от того, где находится наблюдатель, эти островки и кучки распределены примерно одинаково. Примерно как земной ландшафт: где-то горы, где-то сплошной океан, однако в среднем – в очень грубом приближении – везде наблюдаешь примерно одинаковые сочетания суши и воды. Если, подобно Эйнштейну, применить обобщенную теорию пространства и времени ко Вселенной в целом, такая точка зрения очень полезна.
Кроме того, нужно было предположить, что Вселенная изотропна, то есть она должна выглядеть одинаково, если смотреть из любого места в любом направлении. Эту идею усвоить несколько сложнее. В конце концов, едва ли мы вправе утверждать, что мир или Солнечную систему мы воспринимаем именно так – и даже межзвездное ночное небо полно крупных неоднородностей: возьмем хотя бы ленту Млечного Пути. Однако на масштабах намного крупнее нашей Галактики количество и расположение небесных тел в любом направлении должно быть более или менее одинаковым.
Впервые этот космологический принцип совместили с идеями Коперника в начале 50-х годов ХХ века, когда знаменитый физик австрийского происхождения Герман Бонди[32] применил словосочетание «космологический принцип Коперника» при обсуждении космологической модели под названием «теория стационарной Вселенной» (впоследствии было показано, что модель эта ошибочна).
Как следует уже из названия, теория стационарной Вселенной предполагает, что Вселенная вечна и не имеет ни начала, ни конца. Чтобы сделать эту модель более удобоваримой, Бонди провозгласил еще более строгий принцип: Вселенная выглядит одинаково во всех направлениях для любого наблюдателя не просто в любом месте, но и в любой момент. Хотя теперь мы понимаем, что Вселенная наша отнюдь не стационарна, космологический принцип Коперника подкрепил общую идею, что наше место в космосе совершенно заурядно, в нем нет ничего выдающегося – ни в пространстве, ни во времени.
В середине ХХ века многие отрасли науки – от космологии до микробиологии и генетики – прогрессировали семимильными шагами, появилось несколько поколений необычайно авторитетных ученых. Однако становилось все очевиднее, что сама Вселенная эволюционирует, что она очень разнообразна, – и сразу несколько человек независимо отметили некоторые странные совпадения в значениях фундаментальных физических постоянных. Речь идет о числах, которые описывают, например, силу гравитации или массу субатомных частиц, а в особенности – оценивают возраст космоса. Между определенными сочетаниями этих чисел возникли неожиданные соотношения. Скажем, отношение гравитационной и электрической сил, в которое входят константы, описывающие силу гравитации, и массы и заряды электронов и протонов, примерно равно 10. Это число удивительно напоминает нынешнюю оценку возраста Вселенной, если выразить ее в атомных единицах времени (одна такая единица примерно равна 2´1039–17 с[33]) – первым на это указал физик Поль Дирак[34]. Но как же эти незыблемые константы связаны с возрастом Вселенной на данный момент?! В далеком – в космических масштабах – прошлом или будущем соотношение, разумеется, было бы уже другим. Более того, в другой момент по космическому времени, вероятно, сложились такие условия, которые исключали появление разумной жизни, поэтому заметить подобные совпадения было бы попросту некому! Это была довольно-таки мерзкая ложка дегтя в бочке меда принципа Коперника, поскольку из нее следовало, что в нашем нынешнем положении в пространстве-времени, а также в нынешних условиях во Вселенной все же есть нечто особое.
Последнее и решающее доказательство, что возраст Вселенной конечен, было получено в 1965 году, когда открыли всепроникающее микроволновое излучение, начало которому было положено в момент рождения космоса: это излучение – реликт высочайших температур при Большом Взрыве[35]. Подобные следы совсем иной Вселенной, которая когда-то была необычайно плотной и высокоэнергичной, – это не просто ложка дегтя в бочке меда. Это целое ведро дегтя в бочке меда принципа заурядности. А особенно ситуация обострилась в 1973 году, когда физик австралийского происхождения Брэндон Картер опубликовал свои соображения.
Картер – физик-теоретик, сыгравший важнейшую роль в развитии современных представлений о физике черных дыр, – вдохновлялся в своих изысканиях интересом к проблеме совпадений констант, возникшим у целого ряда коллег, в том числе у Джона Уилера и молодого Стивена Хокинга. Поэтому он решил затеять научную дискуссию именно на юбилейной конференции в Кракове, устроенной в честь пятисотлетней годовщины со дня рождения Коперника. В своем докладе Картер высказал идеи, которые бродили в умах многих физиков, ломавших голову над этими бросавшимися в глаза совпадениями. Картер углубился в проблему, задавшись вопросом, насколько иной была бы Вселенная, если бы изменилось несколько фундаментальных ее качеств – например, соотношение фундаментальных сил, скрепляющих вещество.
Размышления над этим вопросом натолкнули Картера на интересный вывод, которым он и поделился со слушателями. Возможна, например, такая искаженная версия природы, при которой не образуются звезды, а поскольку химические элементы, из которых мы состоим, вырабатываются именно в звездах и поскольку именно мы наблюдаем происходящее во Вселенной, само это обстоятельство может говорить нам что-то о Вселенной, в которой мы живем. Иначе говоря, само наше существование что-то говорит нам о физическом устройстве Вселенной, то есть может статься, что наша роль важнее, чем мы думали. Подобный подход к изучению мироздания Картер назвал «антропным принципом» – а слово «антропный» означает «человеческий». На самом деле Картер имел в виду несколько другую мысль, поскольку наблюдателем во Вселенной может быть кто угодно, а не только человек. Но хотя в дальнейшем он предложил другой термин, более точный с научной точки зрения, в среде ученых закрепилось именно наименование «антропный».
Глубинный смысл такого подхода к миропониманию прекрасно передают слова самого Картера[36], произнесенные в тот день: «Коперник преподал нам весьма поучительный урок: нельзя считать аксиомой, что мы занимаем во Вселенной какое-то привилегированное центральное положение. К сожалению, налицо сильная и не всегда подсознательная склонность обобщать этот постулат до более сомнительной догмы, согласно которой наше положение вообще нельзя считать привилегированным ни в каком смысле». Идея здесь в том, что нельзя и невозможно игнорировать то обстоятельство, что для зарождения жизни и нашего существования потребовалось совпадение огромного множества природных феноменов.
К настоящему времени об антропном принципе написано множество книг и статей. Для многих физиков и философов он стал настоящей золотой жилой[37] – и зачастую слишком сложной и противоречивой темой для бесконечных бесед за коктейлями, в которых доводы замыкаются сами на себя, словно змей Уроборос, кусающий собственный хвост. Предлагались и крайне смелые формулировки принципа Картера, согласно которым Вселенная может существовать лишь при условии, что она породит разумную жизнь, способную ее наблюдать; лично я постараюсь держаться от этой идеи как можно дальше.
Однако идея антропного принципа имеет колоссальное значение: она заставляет нас бороться с некоторыми предрассудками в своем мировоззрении и изучать, какие искажения при наблюдениях над окружающим миром присущи нам от природы. Слишком углубляться в разнообразные следствия из антропного принципа я не стану, поскольку гораздо более практичные и понятные ответы на наши вопросы о собственной роли в мироздании можно получить куда более конвенциональным путем. Но поскольку антропный принцип входит в явное противоречие с принципом Коперника (точнее, с ортодоксальными представлениями о нашей посредственности), нам все же придется остановиться на некоторых его подробностях.
* * *
В наши дни антропные идеи всплывают по большей части в диспутах о так называемой «тонкой настройке Вселенной», где подробно исследуются совпадения в масштабах Вселенной, которые привели к появлению ученых, задающих подобные вопросы. Идея тонкой настройки примерно такова. Если подробно рассмотреть все множество фундаментальных качеств Вселенной, воплощенных в физических постоянных наподобие соотношения силы гравитации со всеми прочими силами, мы заметим, что, будь эти постоянные чуть-чуть иными, жизнь не зародилась бы.
Правда, на самом деле все несколько сложнее, и цепочка рассуждений примерно такова: при ином соотношении постоянных не существовали бы звезды и галактики, либо в них не вырабатывались бы тяжелые элементы вроде углерода, необходимые для биохимии. То есть целый набор первичных вселенских функций не смог бы задать условия для вторичных функций, от которых мы зависим. Это, разумеется, предполагает также, что жизнь обязательно должна быть похожа на нашу, однако и в самом деле трудно представить себе, как Вселенная, где есть только водород и гелий, породит структуры той сложности, какая свойственна нашей углеродной жизни.
Какие именно качества Вселенной можно считать самыми важными, понятно не сразу. Чтобы сузить диапазон вариантов, проще всего создать хитроумные математические сочетания различных фундаментальных постоянных, которые, в свою очередь, приведут к осязаемым природным явлениям. Ученые Бернард Карр и Мартин Рис[38] проделали это в 1979 году, а позднее, в 1999 году, Рис пересмотрел[39] эти идеи и вывел шесть величин, которые в нашей Вселенной должны были попасть в относительно узкий диапазон, чтобы она выглядела примерно так, как сейчас, и подходила для возникновение жизни в том виде, в каком мы ее знаем.
Вот что это за величины.
• Отношение силы гравитации к электромагнитной силе.
• Доля материи, перерабатываемой в энергию при ядерной реакции превращения водорода в гелий.
• Полная плотность нормального (барионного) вещества во Вселенной.
• Энергетическая плотность квантовых возмущений вакуума (возможно, это и есть та самая темная энергия, которая ускоряет расширение нашей Вселенной).
• Размер крошечных неоднородностей в ранней Вселенной, которые затем выросли в структуры вроде галактик и их скоплений.
• И, наконец, количество пространственных измерений в нашей Вселенной.
Соблюсти все это непросто – и представляется, что шансов, что у какой-то зародившейся Вселенной случайно окажется весь нужный набор, крайне мало. Возможно, сейчас, читая эти строки, вы думаете: «Однако, если было бы иначе, нас бы тут не было и некому было бы об этом думать – мы должны существовать именно в такой Вселенной, вот и все!» Совершенно верно. Но если бы это была единственная Вселенная, если бы ни до, ни после нее не было совсем ничего (что бы это ни значило), это заставило бы задать неловкий вопрос: почему вышло так, а не иначе?
Пожалуй, самый симпатичный ответ на этот вопрос состоит в том, что наша Вселенная всего лишь одна из практически неисчислимого множества возможных Вселенных. Это уникальный пример реальности определенного типа, отделенный временем и пространством – а может быть, измерением, – от сонма иных. Пожалуй, слово «симпатичный» звучит здесь прямо-таки смешно: я только что выдвинул гипотезу об устройстве мироздания, которая вам может показаться бездоказательной. Однако на данный момент теория множественной Вселенной[40] – лидер в гонке за самую глубокую истину в науке. И когда Брэндон Картер предложил свой антропный принцип, он рассуждал примерно в том же ключе.
Не думаю, что кто-нибудь станет утверждать, будто у нас есть прямые доказательства существования множественной Вселенной, однако существует несколько убедительных теорий, которые прекрасно согласуются с этой идеей и к тому же обеспечивают ответы на другие вопросы фундаментальной физики частиц и космологии. Если теория множественной Вселенной верна, из нее может следовать, что проблемы тонкой настройки как таковой вообще не существует. Просто мы живем в одной из Вселенных, которая случайно оказалась «подходящей» для формирования галактик, звезд, тяжелых элементов и сложных молекул на основе углерода. Такое впечатление, что проблема, в сущности, чудесно решена, – и во многих отношениях так и было бы, если бы мы наверняка знали, что живем во множественной Вселенной.
Сложность с решением, основанным на теории множественной Вселенной, заключается в том, что эта теория отчасти мотивирована представлением о том, что наша Вселенная и в самом деле тонко настроена под зарождение жизни. Это решение основано на чисто антропных предпосылках, и по этим предпосылкам предполагается, что мы – единственные представители жизни на свете. Чтобы сформулировать эту теорию, не нужно привлекать никакую другую жизнь или разновидность жизни в каком-нибудь другом уголке мироздания. Это как строить всю философию науки на существовании какого-то особого необычного вида попугаев. Чего нам точно не хочется – так это в конце концов забрести в какой-то тупик. Так что стоит хорошенько разведать, что таится в этом направлении, поскольку мы еще не знаем, живем ли мы в части множественной Вселенной или нет, и поскольку ничего из вышеперечисленного не подводит нас ближе к ответу на вопрос о нашем вселенском значении или его отсутствии.
Думаю, что достаточно очень простых изменений точки зрения на Вселенную[41], и сразу станет понятно, как и почему некоторые аспекты тонкой настройки и антропной аргументации отвлекают нас от главного. Далее я познакомлю вас еще с несколькими подобными гипотезами, однако начнем мы с детского, на первый взгляд, вопроса, который позволит нам перейти к серьезным материям.
Представим на минуту, что толкование собственных наблюдений, которые предложил Галилей, было с радостью принято как величайшее достижение логики и технологии. Так что Галилея вовсе не забросали камнями (к счастью, лишь фигурально выражаясь), а сделали фаворитом церкви и властей XVII века. Согласно этой альтернативной истории, просвещенная элита пользуется этим случаем и запускает масштабную технологическую революцию, так как понимает, каковы экономические преимущества научно-технического прогресса.
Нежась в теплых лучах благодарности и покровительства, Галилей принимается строить сложные телескопы, которые позволяют ему стать первооткрывателем планет вокруг других звезд и подтвердить наличие биологических систем на многих из них. Славная фантазия, этакая альтернативная история науки, вся механика которой зиждется на воде и лошадиной силе, однако главное для нас – то, что она позволяет задаться вопросом, насколько изменился бы сегодняшний мир, если бы так и произошло на самом деле. Мы бы все эти столетия знали, что жизнь не ограничена нашей Землей, а может быть, даже выяснили бы, что где-то живут не только микробы или существа, с которыми невозможно наладить коммуникацию. Так или иначе, у нас уже был бы однозначный ответ на вопрос о том, насколько вероятно и насколько необычно в нашей Вселенной возникновение жизни в том виде, в каком мы ее знаем.
Теперь представим себе, что в этой параллельной реальности обнаруживается, что жизнь, похожая на земную, более или менее распространена. Она встречается довольно часто, однако все же не на всех подходящих планетах, и не настолько необычна, чтобы существовать лишь в отдельных галактиках, скупо разбросанных по просторам Вселенной. Как тогда быть с доводами о тонкой настройке, укорененными в антропных космологических представлениях? Прежде всего, в этом случае подобные вопросы, скорее всего, не пришли бы нам в голову. Это будто интересоваться, почему в мире именно столько видов улиток. Но даже если бы мы задали этот вопрос, в такой гипотетической реальности проблема настройки стояла бы не столь остро.
Было бы всего-навсего понятно, что эта Вселенная подходит для зарождения жизни, однако это не вопрос особого космического предназначения живых существ – просто в первобытном бульоне есть относительно плодородный участок, в котором иногда случайно зарождается что-то дельное. Разумеется, ответ может лежать в широком диапазоне между двумя крайностями: на одном его конце – жизнь, которая представляет собой столь редкостную диковину, что за 14 миллиардов лет она зародилась всего один раз, на другом – жизнь, которая кишмя кишит во Вселенной и заполонила всевозможными своими разновидностями все планетные системы.
В первом случае мы едва ли сочли бы, что эта Вселенная хорошо подходит для зарождения жизни, а очевидное совпадение физических параметров с условиями, необходимыми для ее появления, показалось бы нам просто жестокой шуткой. А во втором случае решили бы, что жизнь просто очень трудно искоренить. Может быть, мы даже задались бы вопросом, возможен ли такой набор физических законов (и представить себе трудно!), при котором зарождение жизни исключено.
Шучу, конечно; однако в каждой шутке есть доля правды, и здесь нужно подчеркнуть два очень важных соображения. Первое тривиально и состоит в том, что вопросы, которыми мы задаемся, – сами по себе прямая функция того, что нам уже удалось пронаблюдать в своем окружении. Второе более существенно: ведь мы, в отличие от обитателей той Земли с альтернативной астрономической историей, которую я выдумал, пока не знаем, какой из вышеизложенных сценариев разыгрывается во Вселенной. А пока не узнаем, ни тонкая настройка, ни антропный принцип не особенно помогут нам определить собственный статус.
Особенно это верно, если считать, что тонкая настройка однозначно определяет, быть нам или не быть. А между тем возможно, что существует проблема «грубой настройки», а тонкая настройка – это всего лишь один из заключенных в ней частных случаев. Я имею в виду, что в моем вымышленном примере вопрос, подходит ли Вселенная для возникновения жизни, не сводится к «все или ничего». Ответ на него лежит в некотором диапазоне фертильности и вероятности. В сущности, я считаю, что в антропной аргументации заложено предположение, что жизнь слаба и капризна: ей нужно, чтобы все сложилось идеально, а иначе она не зародится.
Однако обильные и яркие палеонтологические свидетельства говорят нам, что жесткий естественный отбор на нашей родной Земле позволил жизни самой осуществлять тонкую настройку[42] к окружающей среде. И жизнь как-то пробила себе дорогу благодаря обилию разнообразных сложных химических веществ и жизненно важных элементов, а также различных источников энергии. Да, конечно, все эти обстоятельства определяются фундаментальными законами нашей Вселенной. Однако жизнь на Земле стала настолько разнообразной, что может задействовать целый ряд вторичных биохимических стратегий, не полагаясь на какую-то одну.
То, что жизни для зарождения и сохранения нужна не просто приблизительно подходящая, «черновая» среда, не так уж очевидно. Так что подлинная космологическая тонкая подстройка должна сводиться скорее к созданию обстановки, в которой жизни относительно легко возникнуть, – и я пока не стану проводить различий между разумной и «просто» жизнью, поскольку жизнь в любой ее форме отнюдь не проста.
* * *
Такая точка зрения не противоречит исследованиям совпадений физических постоянных и других величин, в число которых входит, в частности, соотношение массы и энергии во Вселенной. В большинстве подобных случаев есть некоторый простор для маневра, и это можно показать на примере выработки химических элементов в результате ядерного синтеза в недрах больших звезд.
В первой половине ХХ века ученые обнаружили, что условия в недрах звезд обеспечивают синтез атомных ядер, а их мощная энергия позволяет выковывать все более и более тяжелые элементы. Однако разобраться в собственно механизме звездного нуклеосинтеза оказалось непросто, и в начале 1950-х годов британский физик Фред Хойл[43] понял, что с выработкой углерода возникают некоторые сложности. В то время едва зародившиеся теории звездного нуклеосинтеза предполагали, что в звездах вырабатывается относительно мало углерода. Однако Хойл заметил, что поскольку мы созданы из молекул, содержащих углерод, значит, во Вселенной должен быть способ генерировать его в изобилии. Это загадочное противоречие подтолкнуло Хойла к открытию процесса синтеза углерода.
Хойл обнаружил, что углерод формируется во Вселенной в достаточном количестве благодаря одному интересному явлению. Энергия, которая возникает на одной из стадий процесса, когда в недрах звезд сливаются три ядра гелия, почти точно совпадает с энергией ядра углерода в возбужденном состоянии – естественного продукта этого слияния. Это соответствие приводит к возникновению так называемого ядерного резонанса – гармонизации энергетических состояний, которое мощно подхлестывает производительность ядерной реакции: потому-то и получается, что звезды создают очень много углерода, а вовсе не крошечное его количество.
Долгое время ядерный резонанс считался одним из самых сильных доводов[44] в защиту антропного принципа: существование углерода и жизни, основанной на углероде, само по себе предполагает наличие этого особого процесса в звездах. Да, это так, но лишь в определенной степени: дьявол, как всегда, кроется в мелочах. Теперь мы знаем, что для производства углерода не обязательно, чтобы ядерные энергии совпадали так уж точно: есть определенный простор для маневра, так что тонкая настройка, оказывается, не такая уж и тонкая[45]. То же самое можно сказать о многих параметрах тонкой подстройки. Да, все сложилось удачно, но даже если бы некоторые величины были слегка иными, условия для возникновения жизни в том виде, в каком мы ее знаем, все равно оказались бы подходящими.
В этой книге я постараюсь показать, что концепция простора для маневра на самом деле гораздо глубже. Если когда-нибудь мы сумеем точно измерить, насколько Вселенная склонна порождать жизнь, то есть оценим производительность или плотность возникновения жизни в каждом участке космоса, то получим новый инструмент для измерения фундаментальных свойств природы и предсказания возникновения жизни в соответствии с этими фундаментальными свойствами.
Из этого не следует, что жизнь обязательно «избранная» – это скользкая дорожка[46]: нет, просто жизнь – превосходный пример очень сложного природного явления, не исключено, что это самое сложное природное явление во Вселенной, хитроумно и затейливо связанное со многими ключевыми особенностями физических законов Вселенной. Жизнь как таковая – природная лакмусовая бумажка для испытания свойств Вселенной, пробный камень для детального изучения взаимодействия между отдельными характеристиками в тех случаях, когда возможны самые разные отклонения и сочетания.
Это не просто попытка переформулировать антропную аргументацию. В сущности, эта аргументация утверждает, что можно сделать определенные предсказания по поводу Вселенной на основании самого факта возникновения жизни. Я же хочу предложить лишь способ изучить, как взять свойства Вселенной и предсказать частотность жизни в ней, а следовательно, и оценить наше космическое значение. Примерно как предсказать исход выборов по результатам социологического опроса. К этой концепции мы еще вернемся.
Но вернемся ненадолго к анти-антропному варианту – к идее, укоренившейся в нашем сознании с тех самых пор, как мы узнали, что мы – не центр мироздания: мы занимаем во Вселенной ничем не примечательное, заурядное и непривилегированное положение. Так вот, дело в том, что и это представление, заключенное в принципе Коперника и составляющее суть современного научного метода, также не лишено серьезных недостатков.
* * *
Благодаря Копернику у нас появился своего рода комплекс. Идеи Коперника поразительно точно и ясно описали нашу Солнечную систему, и он помог нам вырваться из глубокой колеи кромешного провинциального самолюбования. Да и очевидные свидетельства нашей заурядности на диво убедительны (хотя и подрывают на корню все наши солипсистские и эгоистические тенденции), и к тому же благодаря принципу Коперника мы добились колоссального прогресса в понимании Вселенной и вокруг нас, и внутри нас. Однако из-за принципа Коперника происходит некоторая путаница.
Снова вернемся к вопросу о том, одиноки ли мы (и жизнь на Земле) во Вселенной. На первый взгляд принцип Коперника гласит, что такого быть не может – ведь мы находимся не в центре мироздания, в нас нет ничего особенного, и среда, в которой мы живем, должно быть, типична для огромного количества мест на данном этапе истории Вселенной.
По этой логике, жизнь не только должна быть явлением очень распространенным, – она во многом должна быть очень похожа на жизнь на Земле. Однако действительно ли предположение о нашей заурядности можно считать веским основанием для подобного вывода? Это отдает чересчур буквальным прочтением научных догматов. Коперник пытался всего-навсего понять, как движутся планеты Солнечной системы, построить предельно логичную модель с минимальным количеством натяжек. Не вчитываем ли мы слишком много в механическое решение механической задачи?
Отринуть принцип Коперника или по крайней мере осознать его ограничения – решение не особенно спорное. Антропные идеи – всего лишь одна приемлемая альтернатива, и я знаю, что многие физики и астрономы находят подобные свидетельства в некоторых достаточно очевидных аспектах нашей среды обитания. То обстоятельство, что мы так явно заброшены именно в такое, а не иное место во Вселенной – на планету, вращающуюся вокруг звезды на краю Галактики, а не изолированы в межгалактической пустоте и существуем именно в данный момент космической истории, – попросту не подпадает под критерии «идеальной заурядности».
На самом деле ситуация такова: коперниково мировоззрение в лучшем случае предполагает, что Вселенная должна кишеть жизнью, подобной жизни на Земле, а в худшем не делает вообще никаких выводов по этому поводу. Его альтернативе – антропной аргументации – достаточно всего одного случая возникновения жизни, и это можем быть мы. В лучшем случае некоторые исследования тонкой настройки предполагают, что Вселенная случайно создала условия для возникновения форм жизни, основанных на тяжелых элементах, а не то чтобы она особенно плодородна. Короче говоря, ни та ни другая точка зрения не позволяет сделать сколько-нибудь надежных прогнозов по поводу реальной частотности жизни в нашей Вселенной и выводов относительно нашей значительности или незначительности.
Но нам-то нужны ответы на вопросы! А для этого придется как следует рассмотреть природу многогранной организации вещества во Вселенной и вокруг нас, и внутри нас, чтобы определить собственное место в ней. Значит, нужно будет проложить путь, лавируя между предположениями о заурядности и тонкой настройкой и антропной аргументацией. Надо как-то обойти эти крайности и суметь измерить то, что мы обнаружим по дороге.
История комплекса Коперника – это история увлекательных приключений, история о том, как изучение Вселенной внутри и снаружи нас обретает новые смыслы. Кроме того, это история о нашем прошлом и будущем, в основном – о будущем. Но главное – она о глубинной потребности, о докучливой, неотвязной тяге разобраться, каково наше место в великом механизме мироздания, одолевающей каждого из нас.
Нам нужно знать, причем наверняка, какую роль мы играем, причем не только с философской или эмоциональной точки зрения, но объективно, в холодных цифрах и фактах. Это одна из величайших научных задач современного человечества. В эту задачу входит и умение смотреть за пределы наших хитроумных моделей мироздания, которые служат нам верой и правдой, но все же нуждаются в пересмотре и обновлении, а иногда и в списании в утиль.
Поэтому следующий шаг унесет нас с привычной сегодняшней Земли на Землю незнакомую – вчерашнюю и завтрашнюю. Если мы хотим разобраться, в каком контексте живем, нам придется и возвыситься до космического пространства-времени, и спуститься в микрокосм. И мы обнаружим, что все, что видел изобретательный экспериментатор Антони ван Левенгук в свои микроскопы более трехсот лет назад, было лишь началом подлинно фантастического путешествия.
12
Оригинальные сочинения Аристарха до нас не дошли. Однако Архимед в «Псаммите» («Исчисление песчинок» – трактат, в котором он пытается подсчитать, сколько песчинок поместится во Вселенную) дается отсылка к гелиоцентрической идее Аристарха: «… Аристарх Самосский выпустил в свет книгу о некоторых гипотезах, из которых следует, что мир гораздо больше, чем понимают обычно. Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается по окружности круга… между Солнцем и неподвижными звездами, а сфера звезд… так велика, что круг, по которому… обращается Земля, так же относится к расстоянию до неподвижных звезд, как центр сферы к ее поверхности». (Пер. И. Веселовского).
13
В зависимости от версии аристотелевой модели число этих сфер равнялось или 47, или 55. Aristotle, Metaphysics, 1073b1–1074a13, в кн. The Basic Works of Aristotle / ed. Richard McKeon. New York: Random House, 1941; The Modern Library, 2001, 882–83.
14
Истории, рассказанные в этой главе, во многом почерпнуты из обстоятельного и достойного труда Thomas S. Kuhn. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge/London: Harvard University Press, 1957; rev. ed., 1983, особенно в той части, которая касается более глубоких тенденций, связывающих эту «космологию» с религиозным и научным мировоззрением на протяжении веков.
15
Перевод «Альмагеста» Птолемея на современный английский см. «Ptolemy’s Almagest», trahslated and annotated by G. J. Toomer. Princeton: Princeton University Press, 1998. Название пришло из арабского языка, а там, в свою очередь, произошло от древнегреческого слова, означающего «величайший». Трактат известен также под латинским названием «Syntaxis mathematica».
16
Как мы увидим, в частности, проблема состояла в том, что планеты не оказывались в нужном месте в нужное время, а модель Птолемея предполагала, что все движение по эпициклам и деферентам происходит с постоянной скоростью.
17
См., например, André Goddu. Copernicus and the Aristotelian Tradition: Education, Reading, and Philosophy in Copernicus’s Path to Heliocentrism. Leiden, Netherlands: Brill, 2010. Об истории вопроса и различных точках зрения на него прекрасно рассказано в книге Owen Gingerich. The Book Nobody Read: Chasing the Revolutions of Nicolaus Copernicus. New York: Walker & Company, 2004.
18
Читатель, возможно, спросит, не противоречит ли это первому утверждению. Однако Коперник не собирался создавать замкнутую систему аксиом, перед нами скорее черновой перечень гипотез.
19
И в самом деле, о том, что Коперника стимулировало и что ему мешало, написано очень много. Увлекательная, пусть и спекулятивная теория изложена в Dava Sobel. A More Perfect Heaven: How Copernicus Revolutionized The Cosmos. New York: Walker & Company, 2011.
20
См., например, Ingrid D. Rowland. Giordano Bruno: Philosopher/Heretic. New York: Farrar, Straus and Giroux, 2008.
21
О Браге написано много, и на то есть веские причины: он был весьма колоритным персонажем и располагал средствами, чтобы вести бурную, разгульную жизнь. Датский король Фредерик II снабдил его деньгами на основание обсерватории и отвел для этого островок Вен в проливе Эресунн поблизости от Копенгагена. Обсерватория получила название Ураниборг, а впоследствии для устойчивости к ней были пристроены и подземные помещения. Телескопов у Браге не было, однако Ураниборг была оснащена устройствами, которые позволяли при помощи зрения измерять точное положение небесных тел и угловые соотношения между ними.
22
Свои наблюдения – как мы теперь понимаем, это была сверхновая, – Браге описал в трактате «De Nova et Nullius Aevi Memoria Prius Visa Stella» («О новой, никогда прежде на протяжении веков не виданной звезде») (Copenhagen, 1573). Вместе с наблюдениями комет появление сверхновой позволило Браге оспорить аристотелево представление о неизменном мироздании.
23
Прекрасная книга о развитии западной астрономии и космологии – Arthur Koestler. The Sleepwalkers: A History of Man’s Changing Vision of the Universe. London: Hutchinson, 1959; repr. Arkana / Penguin, 1989. В ней Кеплер описан, в сущности, как научный герой своего времени. По некоторым источникам именно Браге подсказал Кеплеру, что следует заняться Марсом, поскольку это была сложная задача, которая позволяла отделаться от назойливого ассистента и к тому же не дала бы Кеплеру найти доводы в пользу системы Коперника. Однако Кеплер, судя по всему, знал, что делает. В его письме, написанном в 1605 году, мы читаем: «Признаюсь, что когда Тихо умер, я тут же воспользовался отсутствием наследников или недостаточным их вниманием и заполучил его наблюдения в свое распоряжение – а можно сказать, что и узурпировал их».
24
Как ясно из названия, подобные кривые – это буквально результат рассечения конуса плоскостью. В зависимости от их взаимного положения, коническое сечение можно описать параболой, гиперболой, эллипсом или окружностью.
25
Итальянский ученый применял две линзы для создания телескопов, которые позволяли увидеть неперевернутые изображения далеких объектов. Их оптические характеристики были далеки от совершенства, однако лучший телескоп Галилея позволял добиться тридцатикратного увеличения и улавливал больше света, чем невооруженный глаз. Галилей, как и Браге, наблюдал сверхновую (Кеплер тоже ее видел), а поскольку не увидел никакого параллакса, решил, что это звезда и что небеса не незыблемы. Наблюдения над тремя, а затем и над четырьмя спутниками Юпитера натолкнули Галилея на мысль, что это подтверждает точку зрения Коперника: не все небесные тела вращаются вокруг Земли.
26
Горячим сторонником этой идеи был Пьер-Симон Лаплас. В своем «Опыте философии теории вероятностей» (1814) он писал: «Нынешнее состояние Вселенной можно считать результатом ее прошлого и причиной ее будущего. Разум, который в определенный момент будет обладать всеми знаниями обо всех силах, которые приводят природу в движение, и о положении всех предметов, из которых природа состоит, – если к тому же этот разум будет достаточно мощен, чтобы подвергнуть все эти данные анализу, – сможет в одной-единственной формуле выразить движения как величайших тел во Вселенной, так и самого крошечного атома; ведь для подобного разума не останется никаких неопределенностей, и перед глазами у него будет не только прошлое, но и будущее».
27
Его представления о жизни во Вселенной изложены в труде «Cosmotheoros», опубликованном посмертно, в 1698 году.
28
Так называемая «небулярная гипотеза» формирования Солнечной системы из облака вращающегося по орбите и сгущающегося материала, пожалуй, была впервые выдвинута в 1734 году Эммануилом Сведенборгом (да-да, теологом), а затем проработана Иммануилом Кантом (да-да, философом) в 1755 году, и описана Лапласом в 1796 году. Ранние версии теории были крайне неубедительны, поскольку не могли объяснить, почему 99 процентов углового момента импульса системы приходится на планеты. И лишь в начале 1970 годов советский физик Виктор Сафронов предложил убедительное решение и этой проблемы, и некоторых других, и в результате модель снова была принята научным сообществом.
29
По современной номенклатуре Церера (950 км в диаметре) считается карликовой планетой, а Веста (ок. 560 км) – астероидом или малой планетой.
30
Его присутствие выдала ярко-желтая «линия» спектра солнечного света, которую впервые увидели в 1868 году. К 1895 году гелий был выделен из земных минералов.
31
Строго говоря, это был современный космологический принцип. Идеи, которые легли в его основу, восходят к Ньютону. В 1920-е годы и Александр Фридман, и – независимо – Жорж Леметр (первый, кто предположил, что Вселенная расширяется) решили уравнения общей теории относительности, чтобы определить динамику Вселенной, которая была одновременно и гомогенна, и изотропна. Позднее то же самое проделали Говард Робертсон и Артур Уокер, и в результате возникла так называемая метрика Фридмана – Леметра – Робертсона – Уокера – в сущности, матрица, описывающая отношения пространственно-временных координат во Вселенной.
32
Герман Бонди (1919–2005), английский физик австрийского происхождения, в 1948 году вместе с Томасом Голдом и Фредом Хойлом работал над теорией стационарной Вселенной и сделал целый ряд важных открытий в астрофизике и теории относительности. Принцип Коперника описан в его книге Hermann Bondi, Cosmology (Cambridge: Cambridge University Press, 1952). Я имел удовольствие слушать его лекцию в Кембридже, когда был студентом-магистрантом. Лекция была чудесная.
33
Отношение электрической и гравитационной сил между электроном и протоном равно примерно 2 ´1039, но возраст Вселенной составляет примерно 4,4 ´1017 с, а атомная единица времени – 2,4 ´10–17 с, так что возраст Вселенной в этих единицах примерно равен 1,8 ´1034, что в 100000 раз меньше, чем отношение сил 2 ´1039. – Прим. науч. ред.
34
Поль Дирак (1902–1984). Английский физик, выдвинувший первую состоятельную теорию релятивистской квантовой механики (за что и получил Нобелевскую премию в 1933 году совместно с Эрвином Шредингером). В 1937 году предложил «гипотезу больших чисел», указав на разнообразные «совпадения» в отношениях размеров Вселенной к размерам элементарных частиц, а также в отношениях сил различных масштабов.
35
Вначале Вселенная была раскалена, но по мере расширения она остывает. За 20 минут она остывает настолько, что становится возможным нуклеосинтез, и производятся ядра – дейтерий, гелий и немного лития. Примерно за 380 000 лет после Большого Взрыва она остывает уже настолько, что формируются атомы, в которых электроны комбинируются с протонами и этими простыми ядрами. Это происходит потому, что космологические фотоны уже не обладают энергией, достаточной, чтобы высвобождать электроны. И в результате эти фотоны носятся туда и сюда, но не взаимодействуют с веществом. С течением времени расширяющаяся Вселенная растягивает длину волны первичных фотонов (то есть остужает их). Сейчас, 13,8 миллиардов лет спустя, они уже остыли до микроволновых температур и распространяются во всех направлениях, создавая море излучения – космический фон.
36
См., например, Brandon Carter. Large Number Coincidences and the Anthropic Principle in Cosmology. Confrontation of Cosmological Theories with Observational Data; Proceedings of the Symposium. Krakow, Poland, September 10–12, 1973, IAU Symposium No. 63, ed. M. S. Longair. Dordrecht, Netherlands, and Boston: D. Reidel Publishing Company, 1974, 291–98.
37
Я не имею в виду, что об антропном принципе написано много ерунды, таких работ лишь единицы. По сути дела, это прекрасный пример «смещения отбора», а отметать идеи без достаточных оснований глупо. Очень хороший обзор (в виде критики книги физика Виктора Стенгера) можно найти в статье Luke Barnes. The Fine-Tuning of the Universe for Intelligent Life. 2011. http://arxiv.org /abs/1112.4647.
38
Bernard Carr, Martin Rees. The Anthropic Principle and the Structure of the Physical World. Nature 278 (1979): 605–12.
39
Рекомендую очень славную книгу Martin Rees. Just Six Numbers: The Deep Forces That Shape The Universe. New York: Basic Books, 2000.
40
О том, какие физические законы способны породить конструкцию вроде множественной Вселенной, написано очень много. Среди возможных объяснений – космическая инфляция (экспоненциальное расширение Вселенной на очень ранних стадиях ее жизни, вызванное фазовым переходом), при которой возникает огромное множество «карманных Вселенных», по большей части изолированных друг от друга. Другой вариант – М-теория, обобщение теории струн, которая утверждает, что всякая Вселенная представляет собой многомерную «брану», или мембрану. Кроме того, большие перспективы открывает «многомировая» интерпретация квантовой механики, согласно которой параллельные Вселенные создаются при каждом субатомном событии. Популярный обзор можно найти в Brian Greene. The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos. New York: Alfred A. Knopf, 2011.
41
Уже после того, как я это написал, я понял, что подобные идеи уже обсуждались, например, о них говорил и писал физик Ли Смолин.
42
Примечательно, что это соображение неоднократно высказывал великий американский палеонтолог и эволюционный биолог Стивен Джей Гулд. Это интересная точка зрения. К тому же мне интересно, что бы мы подумали, если бы обнаружили в космосе места, идеально подходящие для жизни в том виде, в каком мы ее понимаем, и при этом бесплодные.
43
Хотя Хойл выдвинул эту идею еще в 1953 году, статья, где он предложил свои подсчеты выработки углерода в звездах, вышла в 1954 году (Fred Hoyle. On Nuclear Reactions Occurring in Very Hot Stars. I. The Synthesis of Elements from Carbon to Nickel. Astrophysical Journal Supplement 1 (1954): 121–46).
44
В последующие годы возникли некоторые разногласия по поводу того, действительно ли Хойл руководствовался антропным принципом или всего лишь пытался разобраться, как звезды могут вырабатывать углерод. См., например, Helge Kragh. An Anthropic Myth: Fred Hoyle’s Carbon-12 Resonance Level. «Archive for History of Exact Sciences» 64 (2010): 721–51. Кроме всего прочего, Хельге Краг пишет и о том, как физик Ли Смолин опроверг «углеродный» довод в пользу антропного принципа – примерно так же, как я критиковал антропный принцип, когда излагал альтернативную историю про Галилея.
45
На это указывали несколько ученых, в том числе физик Стивен Вайнберг. Кроме того, изучение разных энергетических уровней, через которые может вырабатываться углерод-12, показывает, что сдвиги величиной до 60 кэВ, возможно, почти не влияют на количество вырабатываемого углерода. См. статью Mario Livio et al. The Anthropic Significance of the Existence of an Excited State of C-12. Nature 340 (1989): 281–84.
46
Если говорить, что жизнь «избранная», это возвращает к идеям витализма, представлению о некоей «искре жизни», которая отличает живое от неживого. Научное сообщество раз и навсегда отказалось от подобных идей, однако они все равно нет-нет да и возникают.