Читать книгу Аналитическая культура. От сбора данных до бизнес-результатов - Карл Андерсон - Страница 12
Глава 2. Качество данных
ОглавлениеДанные – это фундамент, на котором держится компания с управлением на основе данных.
Если люди, принимающие решения, не располагают своевременной, релевантной и достоверной информацией, у них не остается другого выхода, как только положиться на собственную интуицию. Качество данных – ключевой аспект.
В этой главе понятие «качество» употребляется в самом широком смысле и рассматривается преимущественно с точки зрения аналитической работы.
Специалистам-аналитикам нужны правильные данные, собранные правильным образом и в правильной форме, в правильном месте, в правильное время. (Они просят совсем не много.) Если какое-то из этих требований не выполнено или выполнено недостаточно хорошо, у аналитиков сужается круг вопросов, на которые они способны дать ответ, а также снижается качество выводов, которые они могут сделать на основании данных.
Эта и следующая главы посвящены обширной теме качества данных. Во-первых, мы обсудим, как обеспечить правильность процесса сбора данных. С этой точки зрения качество данных выражается в их точности, своевременности, взаимосвязанности и так далее. Затем, в следующей главе, мы поговорим о том, как убедиться, что мы собираем правильные данные. С этой точки зрения качество выражается в выборе оптимальных источников данных, чтобы обеспечить максимально эффективные выводы. Иными словами, мы начнем с того, как правильно собирать данные, и перейдем к тому, как собирать правильные данные.
В этой главе мы сосредоточимся на способах определения достоверности данных и рассмотрим случаи, когда данные могут оказаться ненадежными. Для начала разберем критерии качества – все характеристики чистых данных. Затем рассмотрим самые разные факторы, влияющие на ухудшение качества. Этой теме мы уделим особое внимание по ряду причин. Во-первых, подобных факторов может быть великое множество, и они носят практический, а не теоретический характер. Если вам доводилось работать с данными, то, скорее всего, вы сталкивались с большинством из них. Они неотъемлемая часть нашей реальности и возникают гораздо чаще, чем нам бы того хотелось. Именно поэтому у большинства специалистов по работе с данными подавляющая часть рабочего времени уходит на очистку. Более того, вероятность возникновения этих факторов повышается с увеличением объема данных. Мой бывший коллега Самер Масри однажды заметил: «При работе с большими масштабами данных всегда помните, что вещи, которые случаются “один раз на миллион”, могут произойти в каждую секунду!» Во-вторых (и, возможно, это даже важнее), активная проверка и сохранение качества данных – совместная обязанность всех сотрудников. Каждый участник аналитической цепочки ценности должен следить за качеством данных. Таким образом, каждому участнику будет полезно на более глубоком уровне разбираться в этом вопросе.
Итак, учитывая все сказанное, давайте рассмотрим, что означает качество данных.