Читать книгу Работа с данными в любой сфере - Кирилл Еременко - Страница 10

Часть первая
«Что это?» Ключевые принципы
01
Определение данных
Данные могут генерировать контент

Оглавление

Итак, что если после всех умных свидетельств, основанных на данных, вы возненавидели фильм, который недавно видели в кинотеатре? Ну, данные, возможно, не могут предсказать все, но они, безусловно, заставили вас занять место перед экраном. Иногда данные могут получить тройку за достижения, но они всегда получают отлично за усилия. И над первым уже работают. Вместо того чтобы привязывать нужные демографические показатели аудитории к новому фильму или телевизионному сериалу, кинокомпании теперь находят способы использовать данные об аудитории, чтобы принимать обоснованные решения о предлагаемых публике развлечениях.

Но эта перемена влечет за собой необходимость в большем количестве данных. По этой причине сбор данных не прекращается, как только вы посмотрели выбранный для вас фильм; любые последующие комментарии, которые вы оставляете в социальных сетях или шлете по электронной почте, изменение ваших привычек просмотра фильмов в интернете генерируют о вас как о «кинозрителе» свежий массив данных, который учитывается в любых будущих рекомендациях, прежде чем наконец вы станете частью какой-либо демографической группы. Таким образом, по мере того как из подростка-эмо, интересующегося только демоническим пением, вы превращаетесь в любителя сложной сюрреалистической буффонады, которого все избегают на коктейльных вечеринках, ваши данные будут меняться вместе с вами и адаптироваться к этим колеблющимся предпочтениям.

В качестве примечания: еще более приятная новость состоит в том, что данные не отрицают ваших интересов. Если вы только прикидываетесь знатоком, но в действительности, как только опускаете шторы, до сих пор наслаждаетесь дрянными фильмами о зомби, ваши данные сохранят этот тайный вскормленный вами энтузиазм.

Конечно, оборотная сторона медали в том, что ваши данные могут выдавать секреты, касающиеся ваших предпочтений. Имейте в виду, что данные – это запись действий, они не будут лгать на ваш счет. Некоторые даже тратят недюжинные усилия, чтобы скрыть свой «фактический» след на сайтах цифровых музыкальных сервисов, теша собственное тщеславие: они запускают альбом музыки, которая, по их мнению, служит в обществе признаком хорошего вкуса, но не слушают ее, так что их накопленные данные представят искаженную версию того, что им нравится. На мой взгляд, у этих людей слишком много свободного времени, но манипулирование данными тем не менее является важной темой, и со временем мы вернемся к ней.

Кейс: Netflix

Сериал «Карточный домик», выпущенный развлекательной компанией Netflix, впервые доказал индустрии, насколько сильны могут быть данные не только в том, что касается охвата нужной аудитории определенными разновидностями контента, но и в управлении фактическим производством контента.

Сериал – политическая драма – выпуска 2013 г. был первой проверкой того, как данные могут быть применены в производстве хитов. В преддверии создания «Карточного домика» Netflix собирала данные о своих пользователях. Полученные сведения о зрительских привычках позволили Netflix группировать свой видеоконтент в разнообразные и даже удивительные категории. Интерфейс скрывал от пользователей эти категории, но тем не менее они были использованы компанией, чтобы представить нужный фильм нужной аудитории.

Когда информация об этих подкатегориях появилась в интернете несколько лет назад, люди были ошеломлены. Чтобы вы могли получить представление о том, насколько точно действовала Netflix, вот некоторые варианты подкатегорий: «Захватывающие фильмы ужасов 1980-х», «Хорошее образование и воспитание с участием героев “Маппет-шоу”», «Драмы шоу-бизнеса», «Глуповатая независимая сатира», «Откровенные фильмы о реальной жизни», «Умные фильмы о заграничных войнах», «Бросающие в дрожь триллеры» и «Признанные критиками мрачные фильмы-экранизации». Таковы весьма специфические предпочтения зрителей. Но Netflix нашла значительную аудиторию для каждой из этих категорий и для многих других.

В конце концов исследователи данных в Netflix начали видеть совпадения в зрительских моделях их аудитории. Оказалось, что существует значительное число подписчиков Netflix, которые наслаждались и работой Кевина Спейси, и серьезными политическими драмами. Остальное – перезапуск оригинального «Карточного домика» 1990-х гг. с Кевином Спейси в главной роли – это история (или это данные?).

Оседлав волну успеха

Netflix оказалась права, высоко оценив возможности данных: сериал «Карточный домик» был отмечен наградами и получил высокие оценки критиков. Поэтому неудивительно, что многие конкуренты Netflix попытались скопировать эту выигрышную модель. Хейделин де Понтевес, предприниматель в области данных и мой бизнес-партнер, работал на конкурента Netflix в целях создания подобной системы.

«Мы знали, что у Netflix уже есть мощная система рекомендаций, и поэтому от нас как разработчиков баз данных и операционных систем требовалось не создать то же самое для нашей компании, а найти, где можно добиться разницы. Мы поняли, что для разработки действительно интересной системы нам нужно сделать больше чем просто инструмент для рекомендаций фильмов, соответствующих определенным демографическим сегментам. Мы также хотели создать алгоритм, позволяющий предлагать фильмы, которые могли бы вывести пользователей из их зоны комфорта, но в то же время доставить им удовольствие. Мы действительно стремились к тому, чтобы появился некий элемент неожиданности».

(Де Понтевес, 2017 г.)

Хейделин понимал, что для достижения этой цели потребуется сложная система, способная проникнуть в головы пользователей и понять их предпочтения лучше, чем те сами понимали это. Он достиг цели, извлекая все имевшиеся у компании данные по клиентам и применяя правильное сочетание моделей, чтобы найти связи между зрительскими привычками. Помните, что этот подход почти такой же, как был у Джорджа Гэллапа многие годы назад; благодаря доступным технологиям и воображению аналитика данных мы теперь можем получить доступ к данным гораздо более хитроумным (и автоматизированным) способом.

Работа с данными в любой сфере

Подняться наверх