Читать книгу Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - Кит Йейтс - Страница 2

Предисловие
Почти все

Оглавление

Мой четырехлетний сын любит играть в саду. Его любимое занятие – выкапывать и рассматривать всяких ползучих тварей, особенно улиток. Если он достаточно терпелив, попавшие к нему в руки улитки, отойдя от первого шока, осторожно вылезают из своей раковины и начинают ползать по его маленьким ручкам, оставляя следы вязкой слизи. Когда же они ему наскучат, он равнодушно выбрасывает их в компостную кучу или на дрова за сараем.

В конце сентября прошлого года, после особенно напряженной охоты, откопав пять или шесть больших особей и избавившись от них, он подошел ко мне, когда я пилил дрова для костра, и спросил: «Папа, а сколько там, в саду, улиток?» Обманчиво простой вопрос, на который у меня не было хорошего ответа. Их могла быть сотня или тысяча. Честно говоря, разницы он бы не понял. Тем не менее его вопрос вызвал у меня интерес. С этим определенно стоило разобраться вместе.

Мы решили провести эксперимент. Ближайшим субботним утром мы пошли собирать брюхоногих. Через десять минут у нас оказалось в общей сложности 23 улитки. Я вытащил из заднего кармана маркер и пометил каждую крестиком. Как только они все были помечены, мы опорожнили ведро, выпустив улиток обратно в сад.

Через неделю мы совершили новый заход. На этот раз за десять минут мы добыли лишь 18 улиток. Осмотрев их внимательно, мы обнаружили у трех из них на раковинах крестик; у оставшихся 15 его не было. Вот и все, что нам требовалось для подсчета.

Идея заключается в следующем: количество улиток, которых мы поймали в первый день (23) – это некоторая часть общей численности брюхоногого населения сада, «перепись» которого мы хотим провести. Если мы вычислим, какую долю она составляет, то сможем найти размер всей популяции. Поэтому мы используем вторую выборку (тех, что наловили в следующую субботу). Число отмеченных особей в ней (3 из 18) должно составлять ту же долю, что и общее число отмеченных от всех особей в саду. Упростив это соотношение, мы обнаружим, что пометили каждую шестую особь (как вы можете видеть на рис. 1). Далее, умножив число помеченных в первый день особей (23) на 6, мы получим общее число улиток в саду – 138.


Рис. 1. Отношение количества повторно пойманных улиток (ОХ) к общему количеству пойманных во второй день (О) должно быть таким же, как и отношение количества пойманных в первый день (Х) к общему количеству улиток в саду, помеченных и не помеченных – 3:18 и 23:138 соответственно


После завершения этого мысленного расчета я обратился к своему сыну, который «присматривал» за собранными нами улитками. Как он прокомментировал мое заявление, что в саду обитает примерно 138 улиток? «Папа, – сказал он, не отводя глаз от осколков раковины, все еще липнущих к его пальцам, – я убил ее». Ну, тогда 137.

Этот простой математический метод, известный как мечение и повторный отлов, был разработан экологами для оценки размеров популяций животных. Вы можете использовать его самостоятельно, взяв два независимых образца и сравнив пересечения этих множеств. Так можно оценить количество лотерейных билетов, проданных на местной ярмарке, или посещаемость футбольного матча, не затрудняясь утомительным подсчетом по головам, а оперируя корешками билетов.

Метод мечения и повторного отлова используется и в серьезных научных проектах. Он может дать, например, жизненно важную информацию о колебаниях численности вида, находящегося под угрозой исчезновения. Оценка количества рыбы в водоеме[1] поможет рыбхозяйству определить, сколько можно выдать разрешений на рыбалку. Этот метод настолько эффективен, что его применение вышло за рамки экологии и позволяет узнать размер любых групп – от количества наркоманов среди населения [2] до числа погибших во время войны в Косово [3]. Такова практическая сила простых математических идей. Именно такие концепции мы разберем в этой книге, и именно их я регулярно использую в своей повседневной работе – математической биологии.

* * *

Когда я говорю людям, что занимаюсь математической биологией, в ответ мне обычно вежливо кивают, и этот кивок сопровождается неловким молчанием – будто я собираюсь проверить, помнят ли они теорему Пифагора или как решать квадратное уравнение. Люди не просто теряются – им сложно понять, какое отношение математика, которую они воспринимают как абстрактный, чисто теоретический и отвлеченный предмет, может иметь к биологии, которая, как правило, считается предметом практичным, «приземленным» и прикладным. С такой искусственной дихотомией, люди часто впервые сталкиваются еще в школе: если вам нравились естественнонаучные дисциплины, но алгебра особо не давалась, вас «спихивали» изучать биологию. Если вам, как и мне, нравились естественные науки, но вас (как и меня) не прельщала идея потрошить мертвые тушки (в начале курса по препарированию я как-то раз упал в обморок, когда зашел в лабораторию и увидел на своем рабочем месте рыбью голову), то вам приходилось идти на физику. Вместе им не сойтись…

Так было и со мной. В старших классах я бросил биологию и сдавал экзамены для поступления в институт по математике (основной и углубленный курс), физике и химии. В университете мне пришлось еще больше упорядочить свой учебный план. Меня расстраивало, что придется навсегда оставить биологию: предмет, который, как мне казалось, обладал невероятной силой, способной изменить жизнь к лучшему. Я с нетерпением предвкушал возможностью окунуться в мир математики, но опасался, что берусь за предмет, малоприменимый на практике. Сильнее ошибиться я не мог.

Я грыз гранит «голой» математики, которой нас учили в университете, запоминал доказательство теоремы о промежуточном значении или определение векторного пространства, но настоящим смыслом жизни для меня стали курсы прикладной математики. Лекторы рассказывали, как используют математику инженеры при строительстве мостов, чтобы те не входили в резонанс и не рушились из-за ветра, или авиаконструкторы – при проектировании крыльев, которые удерживают самолеты в небе. Я узнал о квантовой механике, которую физики привлекают к делу, чтобы понять странные явления субатомных масштабов, и о специальной теории относительности, которая исследует странные последствия постоянства скорости света. Я посещал курсы, объясняющие, как математику используют в химии, финансах и экономике. Я прочел о том, как математику пускают в ход в спорте для повышения результатов лучших спортсменов, и о том, как математику применяют в кинематографе для создания компьютерной анимации сцен, которые не могли бы существовать в реальности. Короче говоря, я узнал, что с помощью математики описать можно практически все.

На третьем курсе мне посчастливилось пройти курс математической биологии. Лектором был Фи́лип Майни, привлекательный североирландский профессор лет сорока с небольшим. Он не только был выдающейся личностью в своей области (позже его изберут членом Королевского общества [4]), но и, несомненно, любил эту тему, увлекая своим энтузиазмом всех студентов в аудитории.

Филип научил меня не только математической биологии, но и тому, что математики – живые люди, а не однозадачные роботы, какими их часто изображают. Математик – это нечто большее, чем «машина для переработки кофе в теоремы», как некогда высказался венгерский специалист по теории вероятностей Альфред Реньи. Когда я сидел в офисе Филипа, ожидая начала собеседования на позицию соискателя ученой степени, я увидел на стенах в рамочках множество писем с отказами, которые он получал от клубов Премьер-лиги, куда писал шуточные заявления о приеме на работу на вакантные тренерские места. В итоге мы больше говорили о футболе, чем о математике.

Именно в этот решающий момент моего академического образования Филип помог мне полностью переосмыслить биологию. Работая под его руководством над кандидатской диссертацией, я исследовал все – от процесса роения саранчи (и того, как его остановить) до прогнозирования комплексной картины развития эмбриона млекопитающего и разрушительных последствий, когда процесс перестает быть согласованным. Я строил модели, объясняющие, как формируется красивая пигментационная окраска птичьих яиц, и писал алгоритмы для отслеживания движения свободно плавающих бактерий. Я моделировал паразитов, уклоняющихся от воздействия нашей иммунной системы, и распространение смертельных болезней в популяции. Исследования, которые я вел во время работы над диссертацией, стали основой всей моей карьеры. Я до сих пор работаю в этих увлекательных областях биологии и в других, веду уже собственных аспирантов на своей нынешней должности доцента (старшего преподавателя) прикладной математики в Университете города Бат.

* * *

Как прикладной математик я считаю математику прежде всего практическим инструментом осмысления и упорядочивания нашего сложного мира. Математическое моделирование может обеспечить нам преимущество в повседневных ситуациях, и для этого не нужно задействовать сотни нудных уравнений или строк компьютерного кода. Математика по своей фундаментальной сути – шаблон. Каждый раз, когда вы смотрите на мир, вы выстраиваете собственную модель наблюдаемых закономерностей. Если вы можете выделить орнамент в бесконечно повторяющемся переплетении ветвей дерева или в многократной симметрии снежинки, то вы видите математику. Когда вы постукиваете ногой в такт музыкальному произведению или когда поете в душе, а ваш голос отражается и резонирует, вы слышите математику. Когда вы забиваете крученый мяч в сетку или ловите летящий по параболе крикетный мяч, вы практикуете математику. С каждым новым ощущением, каждым кусочком сенсорной информации, модели, которыми вы описываете то, что вас окружает, совершенствуются, перенастраиваются и становятся еще более подробными и сложными. Построение математических моделей, разработанных для описания нашей замысловатой реальности, – лучший способ понять правила, которые управляют окружающим миром.

Я считаю, что самые простые, самые важные модели – это истории и аналогии. Нагляднее всего демонстрируют неявное влияние математических принципов разнообразные – от невероятных до обыденных – примеры из жизни. Взглянув под правильными углом, мы сможем попытаться выявить скрытые математические правила, которые лежат в основе нашего повседневного практического опыта.

Семь глав данной книги исследуют подлинные истории переломных событий, в которых корректное (или некорректное) применение математики сыграло решающую роль. Это истории болезней, вызванных дефектными генами; истории банкротств, вызванных применением ошибочных алгоритмов; истории невинных жертв судебных ошибок и нечаянных жертв сбоев в работе программного обеспечения. Мы проследим за историями инвесторов, потерявших состояние, и родителей, потерявших детей, – и все из-за математических недоразумений. Мы столкнемся с этическими дилеммами – от проверок благонадежности до манипулирования статистикой. Мы исследуем такие насущные общественные проблемы, как политические референдумы, профилактика заболеваний, уголовное правосудие и искусственный интеллект. В этой книге мы увидим, что математике есть что сказать как по всем этим вопросам – фундаментальным важным, так и по многим другим.

Я буду не просто приводить примеры работы математических принципов в той или иной ситуации – я вооружу вас простыми и полезными в повседневной жизни математическими правилами и инструментами; они помогут занять лучшее место в поезде и сохранить хладнокровие, получив неожиданные результаты медицинских анализов. Я подскажу несложные приемы, которые позволят не запутаться с цифрами и числами. Нам придется немного запачкать руки типографской краской, разбираясь с тем, какие цифры скрывают броские газетные заголовки. Мы сведем близкое знакомство с математическими законами, лежащими в основе потребительской генетики, и понаблюдаем, как они действуют на практике, шаг за шагом отслеживая попытки остановить распространение смертельной болезни.

Как вы, надеюсь, уже поняли, это не учебник математики. И это не книга для математиков. На ее страницах вы не найдете ни одного уравнения. Смысл книги не в том, чтобы напомнить об уроках математики, которые вы посещали, вероятно, очень-очень давно. Совсем наоборот. Если когда-то вы разочаровались в математике и решили, что она не для вас, что она вам не дается, эта книга избавит от таких комплексов.

Я искренне верю, что математика – для всех и что все могут оценить ее красоту, лежащую в основе сложных явлений, с которыми мы сталкиваемся ежедневно. Срабатывание ложных сигналов тревоги у нас в мозгу – и ложное чувство уверенности, позволяющее нам спокойно спать по ночам; истории, которые навязывают нам соцсети, и мемы, которые распространяются через них, – все это тоже математика. Математика – это лазейки в законе и заплатки, которые их закрывают; технология, которая спасает жизни, и ошибки, которые подвергают их риску; вспышки смертельных болезней и лечебно-профилактические стратегии. Это самый многообещающий шанс найти ответы на фундаментальные вопросы Вселенной и нашего собственного вида. Математика ведет нас по бесчисленным путям жизни и поджидает у гробовой доски, чтобы взглянуть, как мы делаем последний вдох.

1

Pollock, K. H. (1991). Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations: past, present, and future. Journal of the American Statistical Association, 86 (413), 225. https://doi.org/10.2307/2289733

2

Doscher, M. L., & Woodward, J. A. (1983). Estimating the size of subpopulations of heroin users: applications of log-linear models to capture/recapture sampling. The International Journal of the Addictions, 18 (2), 167–82. Hartnoll, R., Mitcheson, M., Lewis, R., & Bryer, S. (1985). Estimating the prevalence of opioid dependence. Lancet, 325 (8422), 203–5. https://doi.org/10.1016/S0140-6736 (85) 92036–7 Woodward, J. A., Retka, R. L., & Ng, L. (1984). Construct validity of heroin abuse estimators. International Journal of the Addictions, 19 (1), 93–117. https://doi.org/10.3109/10826088409055819

3

Spagat, M. (2012). Estimating the Human Costs of War: The Sample Survey Approach. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195392777.013.0014

4

Одно из старейших и авторитетнейших научных обществ в мире. – Прим. пер.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Подняться наверх