Читать книгу Общая вирусология с основами таксономии вирусов позвоночных - Коллектив авторов - Страница 8

3 Морфология, морфогенез, биофизические свойства и генетика вирусов
3.1 Архитектура вирионов

Оглавление

Внеклеточная форма вируса – вирион, предназначенная для сохранения и переноса нуклеиновой кислоты вируса, характеризуется собственной архитектурой, биохимическими и молекулярно-генетическими особенностями. Под архитектурой вирионов понимают ультратонкую структурную организацию этих надмолекулярных образований, различающихся размерами, формой и сложностью строения. Для описания архитектуры вирусных структур разработана номенклатура терминов:

Белковая субъединица – единая, уложенная определенным образом полипептидная цепь.

Структурная единица (структурный элемент) – белковый ансамбль более высокого порядка, образованный несколькими химически связанными идентичными или неидентичными субъединицами.

Морфологическая единица – группа выступов (кластер) на поверхности капсида, видимая в электронном микроскопе. Часто наблюдаются кластеры, состоящие из пяти (пентамер) и шести (гексамер) выступов. Это явление получило название пентамерно-гексамерной кластеризации. Если морфологическая единица соответствует химически значимому образованию (сохраняет свою организацию в условиях мягкой дезинтеграции), то применяют термин капсомер.

Капсид – внешний белковый чехол или футляр, образующий замкнутую сферу вокруг геномной нуклеиновой кислоты.

Кор (core) – внутренняя белковая оболочка, непосредственно примыкающая к нуклеиновой кислоте.

Нуклеокапсид – комплекс белка с нуклеиновой кислотой, представляющий собой упакованную форму генома.

Суперкапсид или пеплос – оболочка вириона, образованная липидной мембраной клеточного происхождения и вирусными белками.

Матрикс – белковый компонент, локализованный между суперкапсидом и капсидом.

Пепломеры и шипы – поверхностные выступы суперкапсида.

Как уже отмечалось, вирусы могут проходить через самые микроскопические поры, задерживающие бактерии, за что и были названы фильтрующимися агентами. Свойство фильтруемости вирусов обусловлено размерами, исчисляемыми нанометрами (нм), что на несколько порядков меньше, чем размеры самых мелких микроорганизмов. Размеры вирусных частиц, в свою очередь, колеблются в относительно широких пределах. Самые мелкие просто устроенные вирусы имеют диаметр чуть больше 20 нм (парвовирусы, пикорнавирусы, фаг Qβ), вирусы средних размеров – от 100 до 150 нм (аденовирусы, коронавирусы). Наиболее крупными признаны вирусные частицы осповакцины, размеры которых достигают 170 × 450 нм. Длина нитевидных вирусов растений может составлять 2000 нм.

Представители царства Vira характеризуются разнообразием форм. По своей структуре вирусные частицы могут быть простыми образованиями, а могут представлять собой достаточно сложные ансамбли, включающие несколько структурных элементов.

Существует два типа вирусных частиц (ВЧ), принципиально отличающихся друг от друга:

1) ВЧ, лишенные оболочки (безоболочечные или непокрытые вирионы);

2) ВЧ, имеющие оболочку (оболочечные или покрытые вирионы).

Строение вирионов, лишенных оболочки. Выделено три морфологических типа вирионов, лишенных оболочки: палочковидные (нитевидные), изометрические и булавовидные (рис. 2). Существование первых двух типов непокрытых вирионов определяется способом укладки нуклеиновой кислоты и ее взаимодействием с белками.

1 Белковые субъединицы связываются с нуклеиновой кислотой, располагаясь вдоль нее периодическим образом так, что она сворачивается в спираль и образует структуру под названием нуклеокапсид. Такой способ регулярного, периодического взаимодействия белка и нуклеиновой кислоты определяет образование палочковидных и нитевидных вирусных частиц.

2 Нуклеиновая кислота не связана с белковым чехлом (возможные нековалентные связи очень подвижны). Такой принцип взаимодействия определяет образование изометрических (сферических) вирусных частиц. Белковые оболочки вирусов, не связанные с нуклеиновой кислотой, называют капсидом.

3 Булавовидные вирионы обладают дифференцированной структурной организацией и состоят из ряда дискретных структур. Основными структурными элементами вириона являются изометрическая головка и хвостовой отросток. В зависимости от вируса в структуре вириона также могут присутствовать муфта, шейка, воротничок, хвостовой стержень, хвостовой чехол, базальная пластинка и фибриллы. Наиболее сложную дифференцированную структурную организацию имеют бактериофаги T-четной серии, вирион которых состоит из всех перечисленных структурных элементов.

Вирионам или их компонентам могут быть присущи два основных типа симметрии (свойство тел повторять свои части) – спиральный и икосаэдрический. В том случае, если компоненты вириона обладают разной симметрией, то говорят о комбинированном типе симметрии ВЧ (рисунок 2 а).

Спиральная укладка макромолекул описывается следующими параметрами: числом субъединиц на виток спирали (u, число необязательно целое); расстоянием между субъединицами вдоль оси спирали (p); шагом спирали (P); P = pu. Классическим примером вируса со спиральным типом симметрии является вирус табачной мозаики (ВТМ). Нуклеокапсид этого палочковидного вируса размером 18 × 300 нм состоит из 2130 идентичных субъединиц, на виток спирали приходится 16 1/3 субъединиц, шаг спирали составляет 2,3 нм (рисунок 2 б).


1-структурная единица капсида; 2-морфологическая единица капсида (капсомер); 3-капсид; 4-нуклеиновая кислота; 5-суперкапсид.

Рисунок 2 – Кубическая (а) и спиральная (б) симметрия капсидов сложно устроенных вирусов (схема)


Икосаэдрическая симметрия – самая эффективная для конструирования замкнутого чехла из отдельных субъединиц. При рассмотрении элементов икосаэдрической симметрии следует различать понятия симметрия и форма. Симметрия в данном случае – это набор поворотов, которые переводят объект сам в себя, форма – это лишь общий вид кубической поверхности объекта (тетраэдр, октаэдр, додекаэдр и т.д.). Многие объекты, имея икосаэдрическую симметрию, не имеют икосаэдрической формы. Икосаэдр – это геометрическая фигура, имеющая 12 вершин, 20 граней, 20 ребер.

Наименьшее число структурных элементов, способных образовать икосаэдр, равно 60, однако капсиды сложноустроенных вирусов могут быть образованы 60 n структурными элементами. Для описания икосаэдрической упаковки структурных элементов в капсиде введено так называемое триангуляционное число (T). Это число, равное частному от деления числа субъединиц на 60. Так, у вируса некроза табака и фага φX174 T = 1 (60 субъединиц), многие вирусы растений имеют T = 3 (180 субъединиц), вирус Синдбис имеет T = 4 (240 субъединиц), ротавирус имеет T = 13 (780 субъединиц).

Многие крупные икосаэдрические вирусы для получения плотной упаковки капсида формируют субтриангуляции на основе структур меньших размеров, что предполагает наличие разных типов субъединиц на вершинах икосаэдра и нарушение локальной симметрии в местах их контактов. В этом случае наблюдается расхождение между реально существующей симметрией ВЧ и видом структуры с соответствующим числом Т. Наиболее простую конструкцию капсида, построенного по такому принципу, имеют паповавирусы. Их капсид образован 72 морфологическими единицами, каждая построена из трех белковых субъединиц, организованных в пентамеры, а ВЧ имеет вид структуры с Т = 7.

Более сложная структура вириона наблюдается у аденовируса, капсид которого организован по принципу ансамблей, обладает строгой икосаэдрической симметрией и имеет вид структуры с Т = 25. На вершинах икосаэдра находятся кластеры – пентоны, содержащие в основании так называемые фибры – стержень с утолщением на конце. Остальная структура капсида построена из гексонов. Гексоны и пентоны – это простейшие подструктуры капсида аденовирусов. Всего в состав аденовириона входит 12 оснований пентонов и 240 гексонов. При диссоциации в мягких условиях образуются надструктуры (капсомеры), состоящие из 9-ти гексонов.

Еще более сложноустроенные вирионы, на пример частицы бактериофагов Tчётной серии, обладают комбинированным типом симметрии. Так, головка бактериофага T4 имеет икосаэдрический тип симметрии, а сокращенный чехол хвостового отростка обладает спиральным типом симметрии. В целом вирион фага T4 обладает комбинированным типом симметрии.

Строение вирионов с оболочкой. Другой тип вирусных частиц – это покрытые или оболочечные вирионы. Оболочечные вирионы, также как и непокрытые, могут быть палочковидными, нитевидными и изометрическими разной формы – от четко очерченных кирпичеобразных вирионов вируса оспы до плейоморфных частиц вирусов герпеса и коронавирусов, имеющих различные размеры и форму.

Оболочка вириона (пеплос, суперкапсид) состоит из липидсодержащей мембраны клеточного происхождения (цитоплазматической мембраны, мембраны эндоплазматического ретикулюма или аппарата Гольджи, ядерной мембраны) и вирусных гликопротеинов, встроенных в мембрану. Оболочку вирионы приобретают в процессе почкования через ту или иную мембрану.

Вирусные гликопротеины, находящиеся в мембране, как правило, формируют поверхностные выступы, называемые шипами и пепломерами. Эти поверхностные выступы характеризуются разной степенью упорядоченности и могут быть представлены одним белком (вирус кори) или двумя разными белками (вирусы гриппа, ретровирусы), могут быть образованы мономерами белка или его димерами и тримерами.

Таким образом, структурная организация вириона описывается двумя характеристиками – наличием/отсутствием оболочки и типом симметрии капсида. Оболочечные вирионы могут обладать икосаэдрической, спиральной и комбинированной симметрией капсида, также как и безоболочечные.

Общая вирусология с основами таксономии вирусов позвоночных

Подняться наверх