Читать книгу Совершенствование процесса изготовления сложных изделий с использованием PDM-систем - Коллектив авторов - Страница 2

1 Теоретические основы применения новых информационных технологий в машиностроении

Оглавление

1.1 Стратегия, концепция и принципы автоматизированных информационных систем, поддерживающих жизненный цикл изделия

1.2 Технология управления данными об изделии в течение его жизненного цикла

1.3 Teamcenter – пакет масштабируемых программных решений для поддержки жизненного цикла изделий

1.1 Стратегия, концепция и принципы автоматизированных информационных систем, поддерживающих жизненный цикл изделия

Глобализация мирового промышленного рынка вносит существенные изменения в традиционный процесс машиностроительного производства наукоемких изделий. Уже никого не нужно убеждать в том, что повышение конкурентоспособности предприятия напрямую связано с управлением одним из стратегических ресурсов – информацией о продукции. Требования к качеству изделий постоянно растут, а жизненный цикл изделия становится короче, номенклатура шире, а объем выпуска – меньше. Вопрос состоит в том, чтобы устранить существующие на предприятиях недостатки в управлении и использовании этой информации и правильно использовать современные решения в данной области. Подходы, применяемые в управлении информацией о продукции, получили сначала наименование CALS-технологии, затем – PLM (Product Lifecycle Management), рисунок 1.1.

CALS – это аббревиатура, которая сменила несколько значений. На настоящий момент придерживаются мнения, что CALS (Continuous Acquisition and Life cycle Support) – непрерывная информационная поддержка жизненного цикла изделий [2, 4, 7-9, 13, 17, 19-20, 22, 24, 27-30, 32, 34, 40-46, 49-50, 56, 60, 62, 68, 70, 72, 75].


Рисунок 1.1 – Product Lifecycle Management – управление жизненным циклом продукции


Идея CALS родилась в 80-е годы в оборонном комплексе США. Министерство обороны рассчитывало, используя CALS как стратегию экономического, научно-технического развития, снизить время на разработки сложных систем вооружения; ограничить стоимость поддержки изделий и комплексов в эксплуатации, которая может длиться 40 и более лет, при этом затраты на эксплуатацию могут намного превосходить затраты на закупку изделий и комплексов; более эффективно осуществлять закупки военной техники и решать другие задачи, обеспечивая обмен информационными потоками по всему жизненному циклу сложных наукоемких изделий промышленности. Учитывая, что такие задачи специфичны не только для вооружений, CALS быстро распространилась и на другие отрасли промышленности не только в США, но и во всех развитых странах мира [6].

В Советском Союзе в 80-е годы концепция интегрированной компьютеризации использовалась при создании авиационно-космической системы «Энергия-Буран» (генеральный конструктор – академик АН СССР В.П. Глушко) [3].

Принципы CALS использовались в разрабатываемом по инициативе НПО «Молния» (генеральный конструктор – д-р техн. наук Г.Е. ЛозиноЛозинский, генеральный директор канд. техн. наук А.С. Башилов) совместно с научными центрами ЦАГИ, ЛИИ, ЦИАМ, ВИАМ, НПО «Энергомаш» и другими участниками проекта Многоцелевой авиа-космической системы (МАКС). Воздушным стартом МАКС служит широкофюзеляжный самолет Ан-225 («Мрия»), созданный на базе самолета Ан-124 («Руслан») – генеральный конструктор – академик АН СССР О.К. Антонов. «Мрия» создавалась в рамках проекта «энергия-Буран» [3].

CALS базируется на локальных системах CAD/CAM/CAE (Computer Aided Design – система инженерного проектирования/Computer Aided Manufacturing – система автоматизированного производства/Computer Aided Engineering – система инженерного анализа) и др. при разработке, производстве, эксплуатации сложной наукоемкой техники, которая требует создания, преобразования, передачи между различными участниками жизненного цикла изделий больших объемов технической информации [26]. Уже сейчас стало ясно, что локальная компьютеризация отдельных видов деятельности не оправдывает возлагаемых на нее надежд в связи с тем, что первые реализации информационных технологий представляли собой попытки внедрения качественно новых сред в традиционную технологическую среду. Эти попытки либо полностью отторгались, либо адаптировались к среде таким образом, что эффект от использования их был велик [6].

В мировой практике считается, что CALS-технология – это высокоэффективная технология ХХI столетия в создании наукоемких изделий машиностроения.

Принципиальное свойство CALS-технологии состоит в том, что все этапы жизненного цикла связаны информационно в единый непрерывный процесс. Другими словами, этапы: разработка концепции и определение сегмента рынка, научные расчетно-экспериментальные исследования, проектирование, натурные испытания, производство, сертификация, логистическая поддержка и документирование для эксплуатации – все этапы сквозным образом «провязаны» электронным (безбумажным) обменом данными на сетевых структурах и соблюдением стандартов [26].

Ядром построения интегрированного по всем этапам информационного поля являются полное электронное определение изделия (самолета, вертолета, танка, корабля, и т.п.) и программная система PDM (Product Data Management) для управления всеми данными об изделии.

Важнейшей проблемой является создание электронного документирования для эксплуатации изделия с соблюдением стандартов при передаче изделия заказчику. Здесь без CALS-технологии сделать электронную документацию невозможно, так как эта документация в электронном виде готовится на всех этапах жизненного цикла [6].

Реализация в полной мере характеристик оборудования нового поколения не возможна без комплексной автоматизации проектирования и производства. Интегрированные средства САПР должны обеспечивать автоматизацию проектирования и конструирования, приводящую к созданию электронных моделей изделий, а также составляющих их агрегатов и деталей. Именно электронные модели, обеспечивая информационное единство всех работ, дает возможность их оперативного и точного исполнения. Новое поколение технологических компонентов САПР, функциональность и эффективность которых неуклонно повышается, обеспечивает оперативное формирование управляющих программ для оборудования с числовым программным управлением (ЧПУ), отвечающих требованиям высокопроизводительной обработки [58].

Таким образом, в настоящее время намечены новые рубежи научнотехнического прогресса, предполагающие проведение большого комплекса научно-исследовательских работ, обеспечивающих конкурентоспособность воздушных судов нового поколения.

По инициативе президента Российского союза промышленников и предпринимателей (РСПП) А.И. Вольского в 2001 году была создана Российская ассоциация разработчиков и пользователей ИПИ-технологий на принципах CALS (руководитель профессор А.Г. Братухин), которая в июле 2002 года провела первое всероссийское совещание по проблемам ИПИ/ CALS-технологий в Федеральном научно-производственном центре «ММПП «Салют». В последующем возникли ассоциации, советы и другие организации по CALS [6].

Концепция, принципы CALS на основе анализа международного опыта, деятельности передовых российских предприятий и объединений сводятся к следующему.

1 Интегрированная компьютеризация.

Не локальная, а интегрированная компьютеризация при проведении научно-исследовательских и опытно-конструкторских работ; оценке технического уровня изделий; маркетинговых исследованиях; составления технического задания; проектировании; конструировании; технической подготовке производства; организации и управлении серийным производством; материально-техническом снабжении; сертификации;

поставках; эксплуатации; гарантийном и послегарантийном обслуживании;

ремонте, устранении неисправностей; модернизации; капитальновосстановительном ремонте; демонтаже и утилизации изделий; непрерывной подготовке и переподготовке кадров конструкторов, технологов, организаторов производства, специалистов служб контроля и качества, представителей заказчика продукции, а так же специалистов маркетинга, сбыта, материально-технического обеспечения, основных поставщиков материалов, полуфабрикатов, комплектующих изделий, нормализованных элементов, крепежных изделий.

Этот принцип определяет возможность обеспечения конкурентоспособности продукции, высокого качества изделий наукоемкой промышленности.

2 Информационная среда.

Единая информационная среда, интеллектуальная компьютерная среда в электронной форме для всех участников жизненного цикла изделий с использованием:

– корпоративной сети Internet для структурирования и распространения информации, выполнения электронных транзакций в пределах компании;

– локальных вычислительных сетей (групп компьютеров, серверов и других устройств, объединенных в сеть и расположенных на небольшом расстоянии друг от друга);

– глобальной сети Internet, исключающей человека в качестве главного информационного канала при передаче данных по этапу жизненного цикла изделия с применением CAD/CAM/CAE-систем, обеспечивающих автоматизированное проектирование, производство, инженерные расчетные исследования.

3 Соответствие стандартам.

Гармонизация разрабатываемых и корректируемых нормативнотехнических документов с требованиями: а) международных стандартов в области информационных технологий:

– ISO 10303 (STEP – Standard for Exchange of Product data) – обмен информацией, в том числе между CAD/CAM-системами управления проектами, представления данных об изделии для управления изменениями в конструкторско-технологической информации об изделии в условиях виртуального предприятия, функционирующего в Internet, и др.;

– ISO 8879 (SGML – Standard Generalized Markup Language) – общее описание текстовой информации, стандарт представления текста; ISO 15531 (MANDATE) – представление производственных данных;

– ISO 9735 (EDIFACT) – обмен данными в управлении;

– ISO 13584 (PLIB) – обмен данными в области управления обработки информации о комплектующих как машиностроения, так и электроники;

– ISO 10179 – определяющий странично-ориентированный формат документов, как отображаемых, так и печатаемых, включая описания шрифтов, форматирование текста, разметку документов;

– и других стандартов ISO;

б) федеральных стандартов по обработке информации США (FIPS): FIPS 183 (IDEF/0), FIPS 184 (IDEF/IX) – общее описание модели жизненного цикла изделия;

в) защиты данных, включая алгоритмы шифрования и управления ключами;

г) военных стандартов США (MIL-STD) – общие правила цифрового обмена информацией; (MIL-HDBK) – процессы и методы формализации данных об изделиях и процессах;

а так же с нормативными требованиями:

д) ARINC (Aeronautical Radio, Inc) – корпорации, занимающейся эксплуатацией полетов;

е) ICAO (International Civil Aviation Organization) – международной организации гражданской авиации;

ж) SAE (the Engineering Society for Advancing Mobility Land Sea Air and Space) – общество инженеров транспорта;

и) AECMA (European Association of Aerospace Industries) – Европейской организации представителей авиационно-космической техники и др.

4 Электронное определение изделия.

Обеспечивает непрерывную информационную поддержку изделия в течение всего его жизненного цикла. Основой электронного определения изделия является безбумажное представление информационной модели изделия (электронная модель), включающее все данные о нем с учетом международных стандартов.

Такой подход позволяет связать в единую систему все службы предприятия, участвующие в проектировании и создании нового изделия, технологической подготовке и его серийном производстве, а так же службы, обеспечивающие снабжение, поставку продукта и его сервисную поддержку, ремонт, модернизацию, утилизацию изделий.

Полное электронное определение изделий (Electronic Product Definition), электронная модель изделий (летательные аппараты, корабли и другие технически сложные промышленные изделия) – пространственная увязка сборных изделий без изготовления физических плазов макетов поверхности изделий; технологии оптимизации конструктивных, технологических функциональных, эксплуатационных свойств изделий в режиме параллельного проектирования (CE – Concurrent Engineering); технологии управления конфигурацией изделий в процессе разработки, производства и эксплуатации изделий.

Основу электронной модели составляет трехмерная геометрическая модель, созданная средствами систем 3D-моделирования на базе применяемых моделей поверхностей теоретических обводов и конструкторской документации.

Электронная модель (ЭМ) наукоемкого изделия промышленности – одно из основных средств повышения эффективности проектирования, производства и сопровождения изделий на протяжении всего жизненного цикла.

Разновидностью электронной модели изделия (ЭМИ) является электронный макет (ЭМК), предназначенный для оценки взаимодействия составных частей макетируемого изделия или изделия в целом с элементами производственного и эксплуатационного окружения. ЭМК разрабатывается на проектных стадиях и не предназначается для изготовления по нему изделий, и, как правило, не содержит данных для изготовления и сборки изделий.

Совершенствование процесса изготовления сложных изделий с использованием PDM-систем

Подняться наверх