Читать книгу Фундаментальная теория шахмат - - Страница 6
IV. Простые тактические средства
ОглавлениеОдноходовой оп. маневр по дистанции фигуры относительно краев рамки шахматной доски и других фигур называем курсом, а с последующим измененным курсом – траекторией, а с обозначением полей остановок – маршрутом траектории фигуры.
На рис. 23а показаны курсы фигур параллельные и перпендикулярные друг другу и рамки шахматной доски; на рис 23б – движение фигур относительно друг друга на встречных и совпадающих курсах; на рис. 23в – курсы одних фигур пересекают курсы других – спереди и сзади; на рис 23г и 23д – расходящиеся курсы; на рис 23е – сходящиеся и встречные курсы.
Направления прямых оп. лин и бл. ударов относительно оси ПУ фигуры считаем вектором прямого удара, а с продолжением курса – оп. траекторией маршрута. П. траектория состоит из поперечных, диагональных, поперечно-диагональных и продольных дистанций.
Рис.23а
Рис.23б
Рис.23в
Рис.23г
Рис.23д
Рис.23е
1. Векторы прямых оперативно-линейных ударов с места и с ходу относительно оси ПУ обеих фигур
а) векторы линейных поперечных и диагональных ударов нападающей фигуры с места относительно ее оси ПУ по неподвижной цели
Рис. 24
На рис 24 показаны ПУ таких белых и черных фигур как король ферзь, ладья, слон и пешка. Указаны оси их ПУ на исходном построении перед партией и во время ее на их позициях. Так же указаны места и номера их дв, оп.лин и противобл. элементов этих сил по периметру их расположения на этих фигурах. Штриховыми стрелками с полным наконечником указаны векторы прямых лин. ударов на соответствующих дистанциях. Также указаны названия ударных векторов относительно позиционных осей ПУ этих фигур.