Читать книгу Математика нуждается в систематизации - - Страница 5
Вопросы математикам, на которые они не знают ответов.
ОглавлениеАспирант:
– Профессор! Скажите, в каких случаях какой
следует применять математический аппарат?
Профессор
(после длительной паузы):
– Молодой человек! Вы слишком
многого хотите от науки!
Аспирант:
– Совсем немного. Хочу, чтобы применяемый
метод исследования объекта определял
соответствующий математический аппарат.
Профессор:
– Увы… пока это невозможно.
(Спустя десятилетия любопытный
аспирант сам решил эту проблему.)
Что такое математика и с чего она начинается? Особую остроту этому вопросу придал выдающийся математик Герман Вейль, сказав, что вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым. Современные математики и философы также считают, что кризис математики не преодолен, существует неуверенность в выборе правильного подхода к математике, возникают конфликты по основаниям математики, развитие и применение математической методологии оставляет желать лучшего. Это наверняка известно математикам. Но об этом приходится напоминать, поскольку с точки зрения теории систем возникает ряд тривиальных вопросов к основам математики.
Вопрос № 1:
Все ли математики знают истинное место математики в классификации основных наук?
Вряд ли. Дело в том, что классификация основных наук начинается с системологии, которая является всеобщей (универсальной) методологией всех наук. Она состоит из 4 общих методов: системного подхода, системного анализа, системного синтеза и системотехники. Системотехника здесь содержит слово «техника», имеющее первоначальный древнегреческий смысл «εχνικός», как мастерство или умение применять системные методы в сознательной деятельности.
В каждом из этих методов используется система основные науки: естествознание, философия, математика и техника, как разновидности сознательной деятельности. Причем, каждый метод использует свой присущий только ему раздел науки. Системный подход оперирует материалистической философией и теорией множеств. Системный анализ использует диалектику и комплексный анализ. В системном синтезе философской основой является логика, а математической – векторы. Системотехника применяет философские законы и тензорное исчисление.
Система, как известно, состоит из четырех элементов, расположенных в строгом порядке, где каждый последующий элемент содержит все предыдущие. Поскольку элемент «техника» в данной книге не рассматривается, то «математика» однозначно содержит «естествознание» и «философию».
Именно поэтому математика в своей основе имеет дело с реальными, а точнее, с природными целостными объектами, отображаемыми философскими понятиями и определениями, которые математика моделирует своими условными символами. С этими символами она и работает, создавая модели, реализуемые в будущих реальных объектах. Это прописные истины, над которыми математики, как правило, не задумываются. Они работают с веками созданной математикой и думают, что это так и должно быть. Однако задуматься бы надо. За многие годы известные математики напридумывали много такого, чего в природе не существует, следовательно, не имеет практического применения.
Вопрос № 2:
Известно ли математикам, что любая система, в том числе математическая, имеет всеобщие признаки?
Система первичных математических объектов, как и любая другая, имеет четыре признака:
Количественный – система имеет только четыре структурных образования от одного до четырех взаимосвязанных элементов в каждом;
Метрологический – каждый элемент системы имеет свою меру: реальную величину, изменяющуюся в идеальных пределах;
Качественный – в системе всегда имеется три вида структурных образования по три элемента в каждом: каждый последующий элемент содержит все предыдущие, каждая связь имеет положительное, нейтральное и отрицательное состояния, каждый предыдущий элемент содержит последующий;
Видовой – каждая система имеет четыре вида регулирования (управления): неопределенный – по одному критерию, неоднозначный – по двум критериям, определенный – по трем критериям, однозначный – по четырем критериям.
Вопрос № 3.
Знают ли математики, что их наука содержит систему противоречий?
Очевидно, знают, что есть некоторые противоречия, но какова их система, они вряд ли знают. А она основана на философском понятии «мера». Это единицы измерения, пределы изменчивости, границы перехода из одного состояния в другое (узловые соотношения меры) и отображения (философские отрицания).
Вопрос № 4:
Понимают ли математики, что первичные математические объекты не систематизированы?
У них нет особых претензий к ним: работают с тем, что имеет современная математика. Но при ближайшем рассмотрении претензии возникают к их физической сущности, признакам и определениям. Привязка математических объектов к реальным простейшим элементам Природы выявляет некоторые системные несоответствия. Требуется уточнение их физической природы, функций, структуры и степени определенности.
И здесь возникает целая серия вопросов.
Не совсем понятно, а точнее, совсем непонятно, какими общепринятыми и новыми условными обозначениями, и математическими названиями все это отобразить? В частности, бесконечные множества этих единичных элементов и переходы от одного к другому. Как образуются в энергетической среде космические вихри, которые создают ядра галактик? Как на этих ядрах возникают космические волны, которые превращаются в атомы? Как излучения атомов создают биологические вещества?