Читать книгу Атлас искусственного интеллекта: руководство для будущего - - Страница 3

Глава 1
Земля

Оглавление

Boeing 757 заходит на посадку, направляясь в международный аэропорт Сан-Франциско. Левое крыло опускается, и самолет выравнивается со взлетно-посадочной полосой, открывая вид на самое знаковое место в технологическом секторе. Прямо под нами расположились великие империи Кремниевой долины. Гигантский черный круг штаб-квартиры Apple похож на незакрытый объектив камеры, сверкающий на солнце. А вот и главный офис Google, расположенный рядом с федеральным аэродромом НАСА. Когда-то, во время Второй мировой и Корейской войн, это была ключевая площадка для военно-морских сил США, но теперь Google арендует ее (на шестьдесят лет), и руководители высшего звена паркуют здесь частные самолеты. Рядом с Google находятся большие производственные корпуса Lockheed Martin, где аэрокосмическая и оружейная компания строит сотни орбитальных спутников, предназначенных для наблюдения за деятельностью Земли. Далее, у моста Думбартон, виднеется собрание приземистых зданий, окруженных массивными автостоянками рядом с сернистыми соляными прудами. Здесь располагается компания Facebook. С этой точки зрения ничем не примечательные пригородные улочки и индустриальные высотки Пало-Альто не выдают его истинного богатства, власти и влияния. Есть лишь несколько намеков на его центральное место в глобальной экономике и в вычислительной инфраструктуре планеты.

Я прибыла сюда, чтобы узнать об искусственном интеллекте и о том, из чего он состоит. Но для этого мне придется покинуть Кремниевую долину.

Из аэропорта я тотчас прыгаю в микроавтобус и еду на восток. Я пересекаю мост Сан-Матео-Хейворд и проезжаю мимо Национальной лаборатории Лоуренса Ливермора, где Эдвард Теллер проводил исследования термоядерного оружия в годы после Второй мировой войны. Вскоре за городами Центральной долины Стоктон и Мантека возвышаются предгорья Сьерра-Невады. Здесь дороги начинают петлять вверх через высокие гранитные скалы перевала Сонора и вниз по восточной стороне гор к травянистым долинам, усеянным золотыми маками. Сосновые леса уступают место щелочным водам озера Моно и пустынным рельефам Бассейна и Хребта. Чтобы заправиться, я заезжаю в Хоторн, штат Невада, где находится крупнейший в мире склад боеприпасов. Армия США хранит вооружение в десятках покрытых грязью зиккуратов, расположенных в долине аккуратными рядами. Проезжая по шоссе 265 штата Невада, я вижу вдалеке одинокий VORTAC – большую радиовышку в форме кегли для боулинга, разработанную в эпоху до GPS. У нее одна функция: она передает «Я здесь» всем пролетающим самолетам, являясь в одинокой местности фиксированной точкой отсчета.

Мой пункт назначения – немуниципальная община Сильвер-Пик в долине Клейтон в штате Невада, где проживает около 125 человек. Этот шахтерский городок, один из старейших в Неваде, был почти заброшен в 1917 году, после того как на земле обнаружили запасы серебра и золота. Несколько зданий времен золотой лихорадки по-прежнему стоят, неумолимо разрушаясь под солнцем пустыни. Может быть, городок и маленький, и в нем больше брошенных машин, чем людей, однако есть в нем нечто чрезвычайно редкое. Сильвер-Пик расположен на краю огромного подземного озера, богатого литием.

Ценный литиевый рассол, находящийся под поверхностью, выкачивают из земли и оставляют в открытых, радужно-зеленых прудах для испарения. Когда на них падает свет, пруды видны с расстояния в несколько миль, и они переливаются. Вблизи все выглядит иначе. Черные трубы, похожие на инопланетян, вылезают из земли и ползут по покрытой солью земле в неглубоких траншеях, переправляя соленый коктейль в сушилки.

Здесь, в отдаленном уголке штата Невада, находится место, где создаются материалы для искусственного интеллекта.


Добыча лития, Сильвер-Пик. Фотография Кейт Кроуфорд

Добыча полезных ископаемых для ИИ

Долина Клейтон связана с Силиконовой долиной примерно так же, как золотые прииски XIX века с ранним Сан-Франциско. История горного дела, как и разрушения, которые оно оставляет после себя, обычно упускается из виду в стратегической амнезии, сопровождающей рассказы о технологическом прогрессе. Как отмечает исторический географ Грей Бречин, Сан-Франциско построен на доходы от добычи золота и серебра на землях Калифорнии и Невады в 1800-х годах[39]. Эти же земли были отняты у Мексики по договору Гваделупе-Идальго в 1848 году в конце мексикано-американской войны, когда поселенцам уже стало ясно, что это будут очень ценные золотые прииски. По словам Бречина, это был хрестоматийный пример старой пословицы о том, что «торговля следует за флагом»[40]. Во время значительного территориального расширения Соединенных Штатов тысячи людей были вынуждены покинуть свои дома. После имперского вторжения Америки туда пришли шахтеры, и земля была разграблена до загрязнения водных путей и уничтожения окружающих лесов.

С древних времен горное дело являлось прибыльным лишь потому, что не приходилось учитывать его истинные затраты: ущерб окружающей среде, болезни и смерть шахтеров, а также убытки, причиняемые населению. В 1555 году Георгий Агрикола, известный как отец минералогии, заметил: «Очевидно, что вред от добычи полезных ископаемых больше, чем стоимость металлов»[41]. Другими словами, те, кто получают прибыль от добычи полезных ископаемых, делают это лишь потому, что расходы несут другие люди, как живущие, так еще и не родившиеся. Легко назначить цену драгоценным металлам, но какова точная стоимость дикой природы, чистого ручья, пригодного для дыхания воздуха, здоровья местного населения? Это никогда не оценивалось, и поэтому возникла простая задача: добыть все как можно быстрее. Действовать быстро и ломать все на своем пути. В результате Центральная долина была разрушена, и, как заметил один турист в 1869 году: «Торнадо, наводнение, землетрясение и вулкан, вместе взятые, вряд ли могли произвести больший хаос, распространить большие разрушения и обломки, чем [золотодобывающие работы]. В Калифорнии нет таких прав, которые бы соблюдались горнодобывающей промышленностью. Выгода – вот единственный интерес»[42].

Поскольку Сан-Франциско черпал огромные богатства из шахт, его жители легко забывали, откуда все это бралось. Шахты находились далеко от города, и эта удаленность позволяла людям оставаться в неведении относительно того, что происходило с горами, реками и рабочими. И все же небольшие напоминания о шахтах встречаются повсюду. В новых зданиях города для транспортировки и жизнеобеспечения людей использовались те же технологии, что и в Центральной долине. Системы шкивов, с помощью которых шахтеры спускались в шахтные стволы, были адаптированы и перевернуты, чтобы доставлять людей в лифтах на возвышенные точки города[43]. Бречин предлагает рассматривать небоскребы Сан-Франциско как перевернутые шахтные ландшафты. Руда, добытая из отверстий в земле, продавалась для создания надземных этажей; чем глубже уходили шахты, тем выше в небо тянулись огромные башни офисов.

Сан-Франциско снова обогатился. Когда-то судьбы строились на золотой руде; теперь же в игру вступило такое вещество, как фторид лития. На рынках минералов его называют «серым золотом»[44]. Технологическая индустрия стала предметом повышенного интереса – целых пять крупнейших компаний в мире по рыночной капитализации имеют офисы в этом городе: Apple, Microsoft, Amazon, Facebook и Google. Проходя мимо складов стартапов в районе СоМа, где когда-то жили шахтеры в палатках, можно увидеть роскошные автомобили, сети кофеен, финансируемые венчурным капиталом, великолепные автобусы с тонированными стеклами, курсирующие по частным маршрутам, доставляя работников в офисы в Маунтин-Вью или Менло-Парк[45]. Но всего в нескольких минутах ходьбы находится Дивижн-стрит, многополосная магистраль между СоМа и районом Мишн, где снова появились ряды палаток, готовые приютить людей, которым некуда идти. После технологического бума в Сан-Франциско сейчас там один из самых высоких уровней бездомности[46]. Докладчик ООН по жилищному вопросу назвал сложившуюся ситуацию «неприемлемым» нарушением прав человека, поскольку тысячи бездомных жителей лишены самого необходимого – воды, канализации и медицинских услуг, в отличие от рекордного числа миллиардеров, живущих поблизости[47]. Увы, наибольшие выгоды от добычи полезных ископаемых достались немногим.

В этой главе мы пересечем Неваду, Сан-Хосе и Сан-Франциско, Индонезию, Малайзию, Китай и Монголию: от пустынь до океанов. Мы также совершим путешествие во времени: от конфликта в Конго и искусственных черных озер в наши дни до викторианской страсти к белому латексу. Масштабы будут меняться: от камней до городов, от деревьев до мегакорпораций, от трансокеанских судоходных путей до атомной бомбы. Но во всей этой планетарной суперсистеме мы увидим логику добычи, постоянное сокращение запасов минералов, воды и ископаемого топлива, подкрепленное насилием войн, загрязнением, вымиранием и истощением. Последствия масштабных вычислений можно обнаружить в атмосфере, океанах, земной коре, глубоком времени планеты и жестоком воздействии на обездоленные группы населения по всему миру. Чтобы понять все это, нам необходим панорамный взгляд на планетарный масштаб вычислительной добычи.

Ландшафты вычислений

Летним днем я еду по пустынной долине, чтобы посмотреть на работу последнего горнодобывающего бума. Я прошу телефон направить меня к литиевым прудам, и он, привязанный белым USB-кабелем, отвечает со своего неудобного места на приборной панели согласием. Большое высохшее дно озера Сильвер-Пик образовалось миллионы лет назад в конце третичного периода. Его окружают покрытые коркой пласты, переходящие в хребты, содержащие темные известняки, зеленые кварциты, серый и красный сланец[48]. Литий нашли после того, как во время Второй мировой войны здесь обнаружили стратегические минералы, такие как поташ. Этот мягкий серебристый металл добывался в скромных количествах в течение следующих пятидесяти лет, пока не стал очень ценным материалом для технологического сектора.

В 2014 году компания Rockwood Holdings, Inc., занимающаяся добычей лития, была приобретена химической производственной компанией Albemarle Corporation за 6,2 миллиарда долларов США. Это единственный действующий литиевый рудник в Соединенных Штатах. Сильвер-Пик является объектом пристального интереса Илона Маска и многих других технологических магнатов по одной причине: аккумуляторные батареи. Литий – важнейший элемент для их производства. Например, батареи смартфонов обычно содержат около трех десятых унции данного элемента. Для каждого электромобиля Tesla Model S требуется около ста тридцати восьми фунтов лития[49]. Подобные батареи никогда не предназначались для питания такой энергоемкой машины, как автомобиль, но в настоящее время литиевые батареи являются единственным доступным вариантом для массового рынка[50]. Они имеют ограниченный срок службы и после деградации выбрасываются как отходы.

Примерно в двухстах милях к северу от Сильвер-Пик находится завод Tesla Gigafactory. Это крупнейший в мире завод по производству литиевых батарей. Tesla является потребителем литий-ионных батарей номер один в мире, закупая их в больших объемах у Panasonic и Samsung, и переупаковывая их в свои автомобили и домашние зарядные устройства. По оценкам, Tesla ежегодно использует более двадцати восьми тысяч тонн гидроксида лития – половину всего потребления на планете[51]. Фактически, Tesla можно с большей точностью назвать предприятием по производству аккумуляторов, чем автомобильной компанией[52]. Надвигающаяся нехватка таких важнейших минералов, как никель, медь и литий, представляет риск для компании, что делает литиевое озеро в Сильвер Пик весьма желанным ресурсом[53]. Обеспечение контроля над рудником означало бы контроль над внутренними поставками в США.

Как показали многие исследования, электромобиль – далеко не идеальное решение проблемы выбросов углекислого газа[54]. Добыча, выплавка, экспорт, сборка и транспортировка батарей в цепочке поставок оказывают значительное негативное воздействие на окружающую, среду и, в свою очередь, на сообщества, пострадавшие от их деградации. Небольшое количество встроенных солнечных систем вырабатывают собственную энергию, однако в большинстве случаев для зарядки электромобиля необходимо брать энергию из сети, большая часть которой вырабатывается при сжигании ископаемого топлива[55]. На данный момент этот факт не ослабил решимость автопроизводителей конкурировать с Tesla. Тем самым они оказывают все большее давление на рынок аккумуляторов и ускоряют истощение запасов необходимых минералов.

Глобальные вычисления и торговля напрямую зависят от аккумуляторов. Термин «искусственный интеллект» может вызвать представление об алгоритмах, данных и облачных архитектурах, но ничто из этого не может функционировать без минералов и ресурсов, из которых состоят основные компоненты вычислений. Литий-ионные аккумуляторы необходимы для мобильных устройств и ноутбуков, домашних цифровых помощников и резервного питания центров обработки данных. Они лежат в основе Интернета и всех коммерческих платформ, работающих на его основе, от банковских операций до розничной торговли и биржевых торгов. Многие аспекты современной жизни перенесены в «облако» без учета этих материальных затрат. Наша работа и личная жизнь, наши истории болезни, наш досуг, наши развлечения, наши политические интересы – все это происходит в мире сетевых вычислительных архитектур. И все мы подключаемся к ним посредством устройств, в основе которых лежит литий.

Добыча ископаемых для ИИ является как буквальной, так и метафорической. Новый экстрактивизм добычи данных также охватывает и стимулирует старый экстрактивизм традиционной добычи. Стек, необходимый для работы систем искусственного интеллекта, выходит далеко за рамки многоуровневого технического стека моделирования данных, аппаратного обеспечения, серверов и сетей. Вся цепочка поставок искусственного интеллекта охватывает капитал, труд и ресурсы Земли – и от каждого из них она требует огромных затрат[56]. Облако – это основа индустрии искусственного интеллекта, и оно сделано из камней, литиевого рассола и сырой нефти.

В своей книге «Геология медиа» теоретик Юсси Парикка предлагает думать о медиа не с точки зрения Маршалла Маклюэна, согласно которой медиа являются продолжением человеческих чувств, а как о продолжении Земли[57]. Вычислительные медиа сегодня участвуют в геологических (и климатологических) процессах, от преобразования земных материалов в инфраструктуру и устройства – до питания этих новых систем за счет запасов нефти и газа. Размышление о медиа и технологиях как о геологических процессах позволяет нам рассмотреть радикальное истощение невозобновляемых ресурсов, необходимых для работы технологий настоящего времени. Каждый объект в расширенной сети системы искусственного интеллекта, от сетевых маршрутизаторов до батарей и центров обработки данных, построен с использованием элементов, которым потребовались миллиарды лет для формирования внутри Земли.

С точки зрения глубокого времени, мы извлекаем геологическую историю Земли, чтобы обслужить доли секунды современного технологического времени, создавая такие устройства, как Amazon Echo и iPhone, рассчитанные на срок службы всего в несколько лет. Ассоциация потребительских технологий отмечает, что средний срок службы смартфона составляет всего 4,7 года[58]. Такой цикл устаревания способствует покупке большего количества устройств, увеличивает прибыль и усиливает стимулы для использования неустойчивых методов добычи. После медленного процесса разработки эти минералы, элементы и материалы проходят через чрезвычайно быстрый период добычи, переработки, смешивания, выплавки и логистической транспортировки, преодолевая тысячи миль в процессе своего преобразования. То, что начинается как руда, извлеченная из земли, превращается в устройства, которые используются и выбрасываются. В конечном итоге они оказываются захороненными на свалках электронных отходов в таких местах, как Гана и Пакистан. Жизненный цикл системы ИИ от рождения до смерти имеет множество фрактальных цепочек поставок: формы эксплуатации человеческого труда и природных ресурсов, массивные концентрации корпоративной и геополитической власти. И на протяжении всей этой цепи непрерывное, крупномасштабное потребление энергии обеспечивает непрерывность цикла.

Экстрактивизм, на котором построен Сан-Франциско, находит отклик в практике базирующегося там технологического сектора[59]. Массивная экосистема ИИ опирается на многие виды извлечения: от сбора данных, полученных из наших повседневных действий и выражений, до истощения природных ресурсов и эксплуатации труда по всему миру, чтобы эта огромная планетарная сеть могла быть построена и поддерживаться. ИИ извлекает из нас и планеты гораздо больше, чем мы думаем. Область залива является центральным узлом в мифологии ИИ, но нам придется отправиться далеко за пределы Соединенных Штатов, чтобы увидеть многослойное наследие человеческого и экологического ущерба, питающего технологическую индустрию.

Минералогический слой

Литиевые шахты в Неваде – лишь одно из мест, где из земной коры добывается сырье для производства искусственного интеллекта. Таких мест много, включая Салар на юго-западе Боливии – самое богатое месторождение лития в мире и, соответственно, место постоянной политической напряженности, – центральную часть Конго, Монголию, Индонезию и пустыни Западной Австралии. Без сырья из этих мест современные вычисления просто не работают, однако и эти полезные ископаемые все чаще оказываются в дефиците.

В 2020 году ученые из Геологической службы США опубликовали краткий список из двадцати трех минералов, подверженных высокому «риску поставок», то есть, если они станут недоступны, целые отрасли промышленности, включая технологический сектор, остановятся[60]. В число критически важных минералов входят редкоземельные элементы диспрозий и неодим, которые используются в динамиках iPhone и двигателях электромобилей; германий, используемый в инфракрасных военных устройствах для солдат и в беспилотниках; и кобальт, повышающий производительность литий-ионных батарей.

Существует семнадцать редкоземельных элементов: лантан, церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций, скандий и иттрий. Они обрабатываются и встраиваются в ноутбуки и смартфоны, делая устройства меньше и легче. Эти элементы можно найти в цветных дисплеях, динамиках, объективах камер, аккумуляторных батареях, жестких дисках и многих других компонентах. Они являются ключевыми элементами систем связи – от оптоволоконных кабелей и усиления сигнала на вышках мобильной связи до спутников и технологии GPS. Вот только добыча этих полезных ископаемых зачастую сопровождается насилием на местном и геополитическом уровне. Добыча полезных ископаемых всегда была и остается жестоким занятием. Как пишет Льюис Мамфорд, «горное дело являлось ключевой отраслью, которая обеспечивала сухожилия войны и увеличивала металлическое содержимое первоначального капитала, военного сундука. С другой стороны, оно способствовало индустриализации вооружений и обогащало финансиста в результате обоих процессов»[61]. Чтобы понять бизнес ИИ, мы должны считаться с войной, голодом и смертью, которые несет с собой горное дело.

Недавнее законодательство США, регулирующее некоторые из этих семнадцати редкоземельных элементов, лишь намекает на разрушения, связанные с их добычей. Закон Додда-Франка 2010 года был направлен на реформирование финансового сектора после кризиса 2008 года. В него было включено специальное положение о так называемых конфликтных минералах, или природных ресурсах, добытых в зоне конфликта, а затем проданных для его финансирования. Теперь компании, использующие золото, олово, вольфрам и тантал из региона вокруг Демократической Республики Конго, должны были отчитываться, откуда поступили полезные ископаемые и финансируется ли их продажа вооруженным ополченцам[62]. Как и «кровавые алмазы», термин «конфликтные ресурсы» скрывает глубокие страдания и многочисленные убийства в горнодобывающем секторе. Прибыль от добычи полезных ископаемых финансировала военные операции в продолжавшемся несколько десятилетий конфликте в Конго, способствуя гибели нескольких тысяч людей и перемещению миллионов[63]. Более того, условия труда на шахтах часто приравнивались к современному рабству[64].

Intel потребовалось более четырех лет непрерывных усилий, чтобы получить базовое представление о собственной цепочке поставок[65]. Цепочка поставок Intel сложна: более шестнадцати тысяч поставщиков в более чем ста странах поставляют материалы для производственных процессов компании, инструменты и машины для ее заводов, а также услуги логистики и упаковки[66]. Кроме того, Intel и Apple подвергались критике за то, что для определения бесконфликтного статуса минералов они проверяли только плавильные заводы, а не сами шахты. То есть такие технологические гиганты оценивали плавильные заводы за пределами Конго, а аудит проводили местные жители. Таким образом, даже сертификация технологической отрасли на отсутствие конфликтов теперь под вопросом[67].

Голландская технологическая компания Philips также заявила, что она работает над тем, чтобы сделать свою цепочку поставок «бесконфликтной». Как и Intel, Philips имеет десятки тысяч поставщиков, каждый из которых поставляет комплектующие для производственных процессов компании[68]. Эти поставщики сами связаны с тысячами производителей комплектующих, приобретающих обработанные материалы у десятков плавильных заводов. Плавильные заводы, в свою очередь, покупают материалы у неизвестного числа трейдеров, которые напрямую работают как с легальными, так и с нелегальными горнодобывающими предприятиями, чтобы получить различные минералы, которые в конечном итоге попадают в компьютерные компоненты[69].

По словам производителя компьютеров Dell, сложность цепочек поставок металлов и минералов создает почти непреодолимые проблемы для производства электронных компонентов, свободных от конфликтов. Элементы отмываются через такое огромное количество организаций в цепочке, что определить их происхождение невозможно – так утверждают производители конечной продукции, что позволяет им правдоподобно отрицать любую практику эксплуатации, обеспечивающую их прибыль[70].

Подобно шахтам, обслуживающим Сан-Франциско в XIX веке, добыча полезных ископаемых для технологического сектора осуществляется путем сокрытия от глаз реальных затрат. Незнание цепочки поставок заложено в капитализме, начиная с того, как бизнес защищает себя через сторонних подрядчиков и поставщиков, и заканчивая тем, как товары продаются и рекламируются потребителям. Более чем правдоподобное отрицание стало хорошо отработанной формой недобросовестности: левая рука не может знать, что делает правая, что, в свою очередь, требует более причудливых и сложных форм дистанцирования.

Хотя добыча полезных ископаемых для финансирования войны и является одним из самых крайних случаев вредной добычи, большинство ресурсов не добывается непосредственно в зонах боевых действий. Однако это не означает, что они свободны от человеческих страданий и разрушения окружающей среды. Пристальное внимание к конфликтным минералам, несмотря на свою важность, также используется для того, чтобы отвлечь внимание от вреда, наносимого горнодобывающей промышленностью в целом. Если мы посетим основные места добычи минералов, мы услышим истории об обесцвеченных кислотой реках, разрушенных ландшафтах и исчезновении видов растений и животных, которые когда-то были жизненно важны для местной экологии.

Черные озера и белый латекс

В Баотоу, крупнейшем городе Внутренней Монголии, есть искусственное озеро, заполненное токсичной черной грязью. Оно пахнет серой и простирается до самого горизонта, занимая более пяти с половиной миль в диаметре. Черное озеро содержит более 180 миллионов тонн отходов переработки руды[71]. Озеро образовалось в результате стока отходов с близлежащих шахт Баян-Обо, которые, по оценкам, содержат почти 70 процентов мировых запасов редкоземельных минералов. Это крупнейшее месторождение редкоземельных элементов на планете[72].

Китай поставляет 95 процентов всех редкоземельных минералов в мире. Доминирование Китая на рынке, как отмечает писатель Тим Моган, обусловлено не столько геологией, сколько готовностью страны взять на себя экологический ущерб от добычи[73]. Хотя редкоземельные минералы, такие как неодим и церий, относительно распространены, для их использования требуется опасный процесс растворения серной и азотной кислоты. Эти кислотные ванны дают резервуары ядовитых отходов, которые заполняют мертвое озеро в Баотоу. Это всего лишь одно из мест, переполненное тем, что эколог-исследователь Майра Хирд называет «отходами, о которых мы хотим забыть»[74].

На сегодняшний день уникальные электронные, оптические и магнитные свойства редкоземельных элементов не могут сравниться ни с какими другими металлами, но соотношение полезных ископаемых и токсичных отходов чрезвычайно велико. Стратег в области природных ресурсов Дэвид Абрахам описывает добычу диспрозия и тербия в Цзянси, Китай, используемых в различных высокотехнологичных устройствах. Он пишет: «Только 0,2 процента добытой глины содержит ценные редкоземельные элементы. Это означает, что 99,8 процента земли, извлеченной при добыче редкоземельных элементов, выбрасывается в виде отходов, называемых „хвостами“, которые сбрасываются обратно в холмы и ручьи». В итоге эти отходы создают новые загрязняющие вещества, такие как аммоний[75]. В результате очистки одной тонны редкоземельных элементов, «по оценкам Китайского общества редких земель, образуется 75000 литров кислой воды и одна тонна радиоактивных остатков»[76].

Примерно в трех тысячах миль к югу от Баотоу находятся небольшие индонезийские острова Бангка и Белитунг, расположенные у побережья Суматры. Бангка и Белитунг производят 90 процентов индонезийского олова, используемого в полупроводниках. Индонезия – второй по величине производитель этого металла в мире, после Китая. Национальная оловянная корпорация Индонезии PT Timah напрямую поставляет олово таким компаниям, как Samsung, а также производителям припоев Chernan и Shenmao, которые в свою очередь поставляют его Sony, LG и Foxconn – всем поставщикам Apple, Tesla и Amazon.[77]

На этих небольших островах шахтеры «серого рынка», не имеющие официального трудоустройства, сидят на самодельных понтонах, скребут морское дно бамбуковыми шестами, а затем ныряют под воду и высасывают олово с поверхности через гигантские, похожие на вакуумные трубки. Шахтеры продают найденное олово посредникам, которые также собирают руду у шахтеров, работающих в разрешенных шахтах, и смешивают их вместе, чтобы продать таким компаниям, как Timah[78]. Совершенно нерегулируемый процесс разворачивается вне всякой формальной защиты работников и окружающей среды. Как сообщает журналист-расследователь Кейт Ходал: «Добыча олова – это прибыльный, но разрушительный промысел, который изрезал ландшафт острова, снес бульдозерами фермы и леса, уничтожил рыбные запасы и коралловые рифы, а также нанес ущерб туризму. Ущерб лучше всего виден с воздуха: участки пышного леса скрываются среди огромных полос бесплодной оранжевой земли. Там, где не преобладают шахты, все усеяно могилами, во многих из которых лежат тела шахтеров, погибших на протяжении веков при добыче олова»[79]. Шахты повсюду: во дворах, в лесу, на обочинах дорог, на пляжах. Это настоящий пейзаж руин.

Обычная практика жизни – сосредоточиться на мире, находящемся непосредственно перед нами, который мы ежедневно видим, обоняем и осязаем. Мы привязываемся к месту, к сообществам, известным нам уголкам и проблемам. Но чтобы увидеть все цепочки поставок ИИ, необходимо искать закономерности в глобальном масштабе, быть чувствительным к тому, как история и конкретный вред отличаются от места к месту и в то же время глубоко взаимосвязаны под воздействием многочисленных сил.

Эти закономерности существуют не только в пространстве, но и во времени. Трансатлантические телеграфные кабели – это важнейшая инфраструктура для переправки данных между континентами, эмблема глобальной коммуникации и капитала. Они также являются материальным продуктом колониализма с его моделями добычи, конфликтов и разрушения окружающей среды. В конце девятнадцатого века особое дерево Юго-Восточной Азии под названием Palaquium gutta стало центром кабельного бума. Эти деревья, произрастающие в основном в Малайзии, производят молочно-белый натуральный латекс, называемый гуттаперчей. После того как в 1848 году английский ученый Майкл Фарадей опубликовал в Philosophical Magazine исследование об использовании этого материала в качестве электрического изолятора, гуттаперча быстро стала любимицей инженерного мира. Инженеры увидели в гуттаперче решение проблемы изоляции телеграфных кабелей, чтобы они могли выдерживать суровые и изменчивые условия на дне океана. Скрученным медным проводам требовалось четыре слоя мягкого органического сока дерева, чтобы защитить их от проникновения воды и проводить электрический ток.

По мере развития глобального бизнеса подводной телеграфии рос и спрос на стволы Palaquium gutta. Историк Джон Талли описывает, как местные малайцы, китайцы и даяки получали мизерную плату за опасную работу по валке деревьев и медленному сбору латекса[80]. Латекс перерабатывался и затем продавался через торговые рынки Сингапура на британский рынок, где он превращался в оболочки подводных кабелей, огибающих весь земной шар. Как пишет исследователь СМИ Николь Старосельски: «Военные стратеги рассматривали кабели как наиболее эффективный и безопасный способ связи с колониями – и, как следствие, контроля над ними»[81]. Маршруты подводных кабелей и сегодня обозначают ранние колониальные сети между центрами и перифериями империи[82].

Из зрелой гуттаперчи выходило около одиннадцати унций латекса. Но в 1857 году первый трансатлантический кабель длиной в 4500 километров и весом в две тысячи тонн потребовал около 250 тонн сырья. Для производства одной тонны материала требовалось около девятисот тысяч стволов. Джунгли Малайзии и Сингапура были вырублены; к началу 1880-х годов Palaquium gutta исчезла. В последней попытке спасти цепочку поставок британцы в 1883 году ввели запрет на сбор латекса, но дерево как вид уже практически вымерло[83].

Викторианская экологическая катастрофа на заре глобального информационного общества показывает, как переплетаются отношения между технологией и сырьем, окружающей средой и трудовыми практиками[84]. Так же как викторианцы спровоцировали экологическую катастрофу, так и современные горнодобывающие предприятия и глобальные цепочки поставок еще больше нарушают хрупкий экологический баланс нашей эпохи.

В предыстории планетарных вычислений присутствует мрачная ирония. В настоящее время крупномасштабные системы искусственного интеллекта стимулируют формы экстракции окружающей среды и данных, но, начиная с викторианской эпохи, алгоритмические вычисления возникли из желания управлять и контролировать войны, население и изменение климата.


Palaquium gutta


Историк Теодора Драйер описывает, как основатель математической статистики, английский ученый Карл Пирсон, стремился разрешить неопределенности планирования и управления путем разработки новых архитектур данных, включая стандартные отклонения и методы корреляции и регрессии. Его методы, в свою очередь, были глубоко связаны с наукой о расах, поскольку Пирсон – вместе со своим наставником, статистиком и основателем евгеники сэром Фрэнсисом Гальтоном – верил, что статистика может стать «первым шагом в исследовании возможного влияния селективного процесса на любой характер расы»[85].

Как пишет Драйер, «к концу 1930-х годов эти архитектуры данных – методы регрессии, стандартного отклонения и корреляции – стали доминирующими инструментами, используемыми для интерпретации социальной и государственной информации на мировой арене. Отслеживая узлы и маршруты мировой торговли, межвоенное „математико-статистическое движение“ стало огромным предприятием»[86]. Это предприятие продолжало расширяться после Второй мировой войны, поскольку новые вычислительные системы использовались в таких областях, как прогнозирование погоды в периоды засухи для повышения производительности крупномасштабного промышленного сельского хозяйства[87]. С этой точки зрения, алгоритмические вычисления, статистика и искусственный интеллект были разработаны в двадцатом веке для решения социальных и экологических проблем, но позже использовались для интенсификации промышленной добычи, эксплуатации и дальнейшего истощения экологических ресурсов.

Миф о чистых технологиях

Минералы – это основа искусственного интеллекта, но его жизненной силой по-прежнему является электрическая энергия. Передовые вычисления редко рассматриваются с точки зрения углеродного следа, ископаемого топлива и загрязнения окружающей среды; метафоры вроде «облака» подразумевают нечто плавающее и хрупкое в рамках естественной, зеленой индустрии[88]. Серверы спрятаны в неприметных центрах обработки данных, и их загрязняющие свойства гораздо менее заметны, чем дымящиеся трубы угольных электростанций. Технологический сектор активно рекламирует свою экологическую политику, инициативы по устойчивому развитию и планы по решению проблем, связанных с климатом, используя ИИ в качестве инструмента решения проблем. Все это является частью создаваемого общественностью имиджа устойчивой технологической индустрии без выбросов углекислого газа. В действительности же для работы вычислительных инфраструктур Amazon Web Services или Microsoft Azure требуется гигантское количество энергии, а углеродный след систем ИИ, работающих на этих платформах, постоянно растет[89].

Как пишет Тунг Хуи Ху в книге «Предыстория облака»: «Облако – это ресурсоемкая, добывающая технология, которая преобразует воду и электричество в вычислительную мощность, нанося значительный ущерб окружающей среде, которую затем вытесняет из поля зрения»[90]. Решение проблемы энергоемкой инфраструктуры стало одной из главных задач. Конечно, отрасль приложила значительные усилия, чтобы сделать центры обработки данных более энергоэффективными и увеличить использование возобновляемых источников энергии. Но уже сейчас углеродный след мировой вычислительной инфраструктуры сравнялся с углеродным следом авиационной промышленности в период ее расцвета, и он растет даже быстрее[91]. Оценки разнятся: такие исследователи, как Лотфи Белхир и Ахмед Эльмелиги, считают, что к 2040 году на долю технологического сектора придется 14 процентов глобальных выбросов парниковых газов, а группа исследователей из Швеции прогнозирует, что потребление электроэнергии одними только центрами обработки данных к 2030 году возрастет примерно в 15 раз[92].

Внимательно изучив вычислительные мощности, необходимые для создания моделей ИИ, мы видим, что стремление к экспоненциальному увеличению скорости и точности обходится планете дорогой ценой. Требования к обработке данных при обучении моделей ИИ и, следовательно, их энергопотребление все еще являются новой областью исследований. Одна из первых работ в этой области была опубликована исследователем ИИ Эммой Струбелл и ее командой из Массачусетского университета в Амхерсте в 2019 году. Сфокусировавшись на попытке понять углеродный след моделей обработки естественного языка (NLP), они начали набрасывать потенциальные оценки путем запуска моделей ИИ в течение сотен тысяч вычислительных часов[93]. Первые цифры оказались поразительными. Команда Струбелл обнаружила, что запуск всего одной модели NLP приводит к выбросу более 660000 фунтов углекислого газа, что эквивалентно пяти автомобилям, работающим на газе, за весь срок их службы (включая производство), или 125 перелетам в обе стороны из Нью-Йорка в Пекин[94].

Хуже того, исследователи отметили, что такое моделирование является, как минимум, базовой оптимистичной оценкой. Она не отражает реальных коммерческих масштабов, в которых работают такие компании, как Apple и Amazon, собирающие данные в Интернете и использующие свои собственные модели NLP для того, чтобы системы ИИ, такие как Siri и Alexa, звучали более человечно. Однако точный объем энергопотребления, производимого моделями ИИ в технологическом секторе, неизвестен; эта информация хранится как строго охраняемая корпоративная тайна. И здесь экономика данных основана на сохранении экологического невежества.

В области ИИ стандартной практикой является максимизация вычислительных циклов для повышения производительности, в соответствии с убеждением, что больше – значит лучше. Как говорит Рич Саттон из DeepMind: «Методы, использующие вычисления, в конечном итоге являются наиболее эффективными, причем с большим отрывом»[95]. Вычислительная техника перебора при обучении ИИ или систематический сбор большего количества данных и использование большего количества вычислительных циклов до достижения лучшего результата, привела к резкому увеличению потребления энергии. По оценкам OpenAI, с 2012 года объем вычислений, используемых для обучения одной модели ИИ, ежегодно увеличивался в десять раз. Это связано с тем, что разработчики «постоянно находят способы использовать больше чипов параллельно и готовы платить за это экономические издержки»[96]. Мышление с точки зрения экономических издержек сужает взгляд на более широкую локальную и экологическую цену сжигания вычислительных циклов как способа создания дополнительной эффективности. Тенденция к «вычислительному максимализму» имеет глубокие экологические последствия.

Центры обработки данных являются одними из крупнейших в мире потребителей электроэнергии[97]. Для питания этой многоуровневой машины требуется электроэнергия из сети в виде угля, газа, ядерной или возобновляемой энергии. Некоторые корпорации реагируют на растущую тревогу по поводу энергопотребления крупномасштабных вычислений: Apple и Google заявляют о своей углеродной нейтральности (это означает, что они компенсируют выбросы углерода путем покупки кредитов), а Microsoft обещает стать углеродно-нейтральной к 2030 году. Однако работники этих компаний настаивают на сокращении выбросов по всем направлениям, а не на поблажках из чувства вины перед окружающей средой[98]. Более того, Microsoft, Google и Amazon лицензируют свои платформы искусственного интеллекта, инженерные кадры и инфраструктуру компаниям, добывающим ископаемое топливо, чтобы помочь им найти и добыть топливо из недр земли, что еще больше стимулирует отрасль, наиболее ответственную за антропогенное изменение климата.

За пределами Соединенных Штатов поднимаются еще большие облака углекислого газа. Китайская индустрия центров обработки данных получает 73 процента электроэнергии из угля, выбросив в 2018 году около 99 миллионов тонн CO2[99]. Ожидается, что к 2023 году потребление электроэнергии инфраструктурой китайских центров обработки данных увеличится на две трети[100]. Гринпис поднял тревогу по поводу колоссальных энергетических потребностей крупнейших технологических компаний Китая, утверждая, что «ведущие технологические компании, включая Alibaba, Tencent и GDS, должны резко увеличить объемы закупок чистой энергии и раскрыть данные об энергопотреблении»[101]. Долгосрочное воздействие угольной энергетики проявляется повсюду, превышая любые национальные границы. Планетарный характер добычи ресурсов и ее последствий выходит далеко за рамки интересов национального государства.

Вода рассказывает еще одну историю об истинной стоимости вычислений. История использования воды в США полна сражений и секретных сделок, и, как и в случае с вычислениями, сделки, заключенные в отношении воды, держатся в секрете. Один из крупнейших в США центров обработки данных принадлежит Агентству национальной безопасности (АНБ) в Блаффдейле, штат Юта. Открытый с конца 2013 года, Центр обработки данных разведывательного сообщества в рамках комплексной национальной инициативы по кибербезопасности невозможно посетить. Но, проехав через окрестные пригороды, я нашла проселок на холме, поросшем шалфеем, и оттуда смогла поближе рассмотреть разросшийся объект площадью 1,2 миллиона квадратных футов. Этот объект имеет своего рода символическую силу следующей эры правительственного сбора данных, поскольку он был показан в таких фильмах, как «Citizenfour: правда Сноудена», и изображен в тысячах новостных сюжетов об АНБ. Однако вживую он выглядит неприметно и прозаично – гигантский контейнер для хранения данных, совмещенный с блоком правительственных офисов.

Борьба за воду началась еще до официального открытия центра обработки данных, учитывая его расположение в засушливом штате Юта[102]. Местные журналисты хотели подтвердить достоверность данных о потреблении 1,7 млн. галлонов воды в день, но АНБ изначально отказалось предоставить данные, отредактировало все детали в открытых источниках и заявило, что использование воды является вопросом национальной безопасности. Тогда активисты создали буклеты, призывающие прекратить их материальную поддержку, и разработали стратегию, согласно которой юридический контроль за использованием воды мог бы помочь закрыть объект[103]. Но город Блаффдейл уже заключил многолетнюю сделку с АНБ, по которой город продавал воду по тарифам значительно ниже среднего в обмен на обещание экономического роста[104]. Геополитика воды теперь глубоко объединена с механизмами и политикой центров обработки данных, вычислений и власти – во всех смыслах. С засушливого склона холма, с которого открывается вид на хранилище данных АНБ, все споры и недомолвки о воде становятся понятными: вода, которая используется для охлаждения серверов, отбирается у сообществ и мест обитания, от нее зависящих.

Как грязная работа горнодобывающего сектора была удалена от компаний и жителей городов, так и большинство центров обработки данных находятся вдали от крупных населенных пунктов, будь то в пустыне или в полупромышленных пригородах. Это способствует тому, что мы считаем облако невидимым и абстрагированным, в то время как на самом деле оно материально, влияет на окружающую среду и климат таким образом, что это далеко не всегда осознается и учитывается. Облако зависит от земли, и для того, чтобы оно росло, необходимо расширять ресурсы и слои логистики и транспорта, которые находятся в постоянном движении.

Логистический слой

До сих пор мы рассматривали материальные составляющие ИИ, от редкоземельных элементов до энергии. Основывая наш анализ на конкретных материальных составляющих ИИ – вещах, местах и людях, – мы можем увидеть, как эти составляющие действуют в рамках более широких систем власти. Возьмем, к примеру, глобальные логистические машины, которые перемещают по планете минералы, топливо, оборудование, работников и потребительские устройства ИИ[105]. Головокружительное зрелище логистики и производства, демонстрируемое такими компаниями, как Amazon, было бы невозможно без разработки и широкого признания стандартизированного металлического объекта: грузового контейнера. Подобно подводным кабелям, грузовые контейнеры связывают отрасли глобальной коммуникации, транспорта и капитала, являясь материальным воплощением того, что математики называют «оптимальной транспортировкой» – в данном случае, как оптимизация пространства и ресурсов на торговых путях мира.

Стандартизированные грузовые контейнеры (сами построенные из основных земных элементов – углерода и железа, выкованных в виде стали) обеспечили взрыв современной судоходной промышленности, что, в свою очередь, позволило представить и смоделировать планету как единую массивную фабрику. Грузовой контейнер – это единая мера стоимости, подобно конструктору «Лего», которая может преодолевать тысячи миль, прежде чем встретится со своим конечным пунктом назначения в качестве модульной части более крупной системы доставки. В 2017 году грузоподъемность контейнеровозов в морской торговле достигла почти 250 миллионов дедвейт-тонн грузов, среди которых доминируют такие гигантские судоходные компании, как датская Maersk, швейцарская Mediterranean Shipping Company и французская CMA CGM Group, каждая из которых владеет сотнями контейнеровозов[106]. Для этих коммерческих предприятий грузовые перевозки – относительно дешевый способ перемещения по сосудистой системе глобальной фабрики, однако они скрывают гораздо большие внешние издержки. Точно так же, как они склонны пренебрегать физическими реалиями и затратами инфраструктуры искусственного интеллекта, популярная культура и СМИ редко освещают судоходную отрасль. Автор Роуз Джордж называет это состояние «морской слепотой»[107].

За последние годы морские суда произвели 3,1 процента годовых глобальных выбросов углекислого газа, что больше, чем в Германии в совокупности[108]. Для минимизации внутренних затрат большинство компаний, занимающихся контейнерными перевозками, в огромных количествах используют низкосортное топливо, что приводит к повышенному содержанию в воздухе серы и других токсичных веществ. По оценкам, один контейнеровоз выбрасывает в атмосферу столько же загрязняющих веществ, сколько вырабатывают пятьдесят миллионов автомобилей, а шестьдесят тысяч ежегодных смертей косвенно объясняются загрязнением от грузовых судов[109].

Даже такие дружественные для отрасли источники, как Всемирный совет судоходства, признают, что тысячи контейнеров ежегодно теряются, опускаясь на дно океана или уходя в дрейф[110]. Некоторые контейнеры перевозят токсичные вещества, которые просачиваются в океаны; другие выпускают тысячи желтых резиновых уточек, и те в течение десятилетий выбрасываются на берег по всему миру[111]. Обычно работники проводят в море почти шесть месяцев, часто с длинными рабочими сменами и без доступа к внешней связи.

Наиболее серьезные издержки глобальной логистики ложатся на атмосферу Земли, океаническую экосистему и низкооплачиваемых работников. Корпоративные представления об ИИ не отражают долгосрочные затраты и длительную историю ресурсов, необходимых для создания вычислительных инфраструктур, и энергии, требуемой для их питания. Быстрый рост облачных вычислений, представляемых как экологически чистые, парадоксальным образом привел к расширению границ добычи ресурсов. Только лишь принимая во внимание эти скрытые затраты, а также обширные совокупности участников и систем, мы можем понять, что означает переход к большей автоматизации. Это требует работы против принципов технологического воображения, которое обычно совершенно не связано с земными делами. Например, поиск картинки «ИИ», который выдает десятки фотографий светящихся мозгов и двоичных кодов, парящих в космосе, оказывает мощное сопротивление взаимодействию с материальными аспектами этих технологий. Вместо этого мы начинаем с земли, с добычи и с истории индустриальной власти, а затем рассматриваем, как эти модели повторяются в системах труда и данных.

ИИ как мегамашина

В конце 1960-х годов историк и философ технологии Льюис Мамфорд разработал концепцию мегамашины, желая проиллюстрировать, что все системы, независимо от их размера, состоят из работы отдельных людей[112]. Согласно Мамфорду, Манхэттенский проект стал определяющей современной мегамашиной, тонкости которой скрывались не только от общественности, но даже от тысяч людей, которые работали над ней на охраняемых объектах по всей территории США. В общей сложности 130000 человек трудились в тайне под руководством военных, разрабатывая оружие, которое должно было убить (по самым скромным подсчетам) 237000 человек, упав на Хиросиму и Нагасаки в 1945 году. Создание атомной бомбы зависело от сложной, секретной цепи поставок, логистики и человеческого труда.

Искусственный интеллект – это еще один вид мегамашины, набор технологических подходов, зависящих от промышленных инфраструктур, цепочек поставок и человеческого труда, которые простираются по всему миру, но остаются непрозрачными. Мы поняли, что ИИ – это гораздо больше, чем базы данных и алгоритмы, модели машинного обучения и линейная алгебра. Он метаморфичен: он опирается на производство, транспортировку и физический труд; на центры обработки данных и подводные кабели между континентами; персональные устройства и их необработанные компоненты; на сигналы, передаваемые по воздуху; наборы данных, полученные через Интернет; и непрерывные вычислительные циклы. И за все это приходится платить.

Мы рассмотрели отношения между городами и шахтами, компаниями и цепочками поставок, а также соединяющую их топографию добычи. Принципиально взаимосвязанный характер производства, изготовления и логистики напоминает нам о том, что шахты, на которых работает ИИ, расположены повсюду: не только в отдельных местах, но и рассеяны по всей Земле. Мазен Лаббан называет этот феномен «планетарной шахтой»[113]. Это не означает отрицание множества конкретных мест, где происходит добыча полезных ископаемых с помощью технологий. Скорее, Лаббан отмечает, что планетарная шахта расширяет и реконструирует добычу в новые механизмы, распространяя практику шахт на новые пространства и взаимодействия по всему миру.

В настоящее время, когда воздействие антропогенного изменения климата уже идет полным ходом, поиск новых методов понимания глубоких материальных и человеческих корней систем искусственного интеллекта является жизненно важным. Но это легче сказать, чем сделать. Отчасти это связано с тем, что многие отрасли, входящие в цепочку систем ИИ, скрывают текущие затраты. Кроме того, масштабы, необходимые для создания систем искусственного интеллекта, слишком сложны, слишком затенены законодательством и слишком погрязли в логистических и технических процессах. Но наша цель состоит не в том, чтобы сделать сложные конструкции прозрачными: вместо того, чтобы пытаться в них заглянуть, мы будем соединять многочисленные системы и пытаться понять, как они друг с другом взаимодействуют[114]. Таким образом, наш путь будет пролегать через истории об экологических и трудовых издержках искусственного интеллекта и помещать их в контекст с практиками извлечения и классификации, которыми оплетена повседневная жизнь. Именно размышляя над этими вопросами, мы сможем добиться большей справедливости.

Я совершаю еще одну поездку в Сильвер-Пик. Не доезжая до города, я останавливаю фургон на обочине, чтобы прочитать истерзанный погодой знак. Это исторический маркер Невады 174, посвященный созданию и разрушению маленького городка под названием Блэр. В 1906 году Питсбургская золотодобывающая компания Silver Pick скупила шахты в этом районе. Предвидя бум, земельные спекулянты выкупили все свободные участки вместе с правами на воду, доведя цены до рекордных искусственных максимумов. В итоге горнодобывающая компания провела геодезическую съемку в паре миль к северу и объявила это место территорией нового города: Блэр. Они построили самую большую в штате мельницу для выщелачивания и проложили железную дорогу, которая шла от Блэр Джанкшн до магистрали Тонопа и Голдфилд. Вскоре город процветал. Сотни людей приезжали сюда со всех концов, чтобы получить работу, несмотря на тяжелые условия труда. Однако при такой интенсивной добыче цианид начал отравлять землю, а золотые и серебряные пласты разрушаться и иссякать. К 1918 году Блэр был практически заброшен. Все закончилось за какие-то двенадцать лет. Руины отмечены на местной карте – всего в сорока пяти минутах ходьбы.


Руины в Блэр. Фотография Кейт Кроуфорд


В пустыне стоит палящий жаркий день. Единственные звуки – металлическое эхо цикад и гул случайного пассажирского самолета. Я начинаю подниматься по холму. К тому времени, когда я достигаю скопления каменных зданий на вершине длинной грунтовой дороги, я изнемогаю от жары. Я укрываюсь в развалившихся останках того, что когда-то являлось домом золотодобытчика. Осталось немного: разбитая посуда, осколки стеклянных бутылок, несколько ржавых консервных банок. В те годы, когда Блэр был оживленным городом, поблизости процветали многочисленные салуны, а двухэтажный отель принимал посетителей. Теперь это скопление разрушенных фундаментов.

Сквозь пространство, где раньше стояло окно, открывается вид на долину. Меня поражает осознание того, что Сильвер-Пик тоже скоро станет городом-призраком. Текущий объем добычи на литиевом руднике агрессивен в ответ на высокий спрос, и никто не знает, как долго это продлится. Самая оптимистичная оценка – сорок лет, но конец может наступить гораздо раньше. Тогда литиевые бассейны под долиной Клейтон будут обескровлены – уничтожены из-за батарей, предназначенных для захоронения на свалке. А Сильвер-Пик вернется к своей прежней жизни, как пустое и тихое место, на краю древнего соляного озера, ныне осушенного.


39

Brechin, Imperial San Francisco.

40

Brechin, 29.

41

Agricola quoted in Brechin, 25.

42

Quoted in Brechin, 50.

43

Brechin, 69.

44

See, e. g., Davies and Young, Tales from the Dark Side of the City; and «Grey Goldmine.»

45

For more on the street-level changes in San Francisco, see Bloomfield, «History of the California Historical Society’s New Mission Street Neighborhood.»

46

«Street Homelessness.» See also «Counterpoints: An Atlas of Displacement and Resistance.»

47

Gee, «San Francisco or Mumbai?»

48

H. W. Turner published a detailed geological survey of the Silver Peak area in July 1909. In beautiful prose, Turner extolled the geological variety within what he described as «slopes of cream and pink tuffs, and little hillocks of a bright brick red.» Turner, «Contribution to the Geology of the Silver Peak Quadrangle, Nevada,» 228.

49

Lambert, «Breakdown of Raw Materials in Tesla’s Batteries and Possible Breaknecks.»

50

Bullis, «Lithium-Ion Battery.»

51

«Chinese Lithium Giant Agrees to Three-Year Pact to Supply Tesla.»

52

Wald, «Tesla Is a Battery Business.»

53

Scheyder, «Tesla Expects Global Shortage.»

54

Wade, «Tesla’s Electric Cars Aren’t as Green.»

55

Business Council for Sustainable Energy, «2019 Sustainable Energy in America Factbook.» U. S. Energy Information Administration, «What Is U. S. Electricity Generation by Energy Source?»

56

Whittaker et al., AI Now Report 2018.

57

Parikka, Geology of Media, vii – viii; McLuhan, Understanding Media.

58

Ely, «Life Expectancy of Electronics.»

59

Sandro Mezzadra and Brett Neilson use the term «extractivism» to name the relation between different forms of extractive operations in contemporary capitalism, which we see repeated in the context of the AI industry. Mezzadra and Neilson, «Multiple Frontiers of Extraction.»

60

Nassar et al., «Evaluating the Mineral Commodity Supply Risk of the US Manufacturing Sector.»

61

Mumford, Technics and Civilization, 74.

62

See, e. g., Ayogu and Lewis, «Conflict Minerals.»

63

Burke, «Congo Violence Fuels Fears of Return to 90s Bloodbath.»

64

«Congo ’s Bloody Coltan.»

65

«Congo ’s Bloody Coltan.»

66

«Transforming Intel’s Supply Chain with Real-Time Analytics.»

67

See, e. g., an open letter from seventy signatories that criticizes the limitations of the so-called conflict-free certification process: «An Open Letter.»

68

«Responsible Minerals Policy and Due Diligence.»

69

In The Elements of Power, David S. Abraham describes the invisible networks of rare metals traders in global electronics supply chains: «The network to get rare metals from the mine to your laptop travels through a murky network of traders, processors, and component manufacturers. Traders are the middlemen who do more than buy and sell rare metals: they help to regulate information and are the hidden link that helps in navigating the network between metals plants and the components in our laptops» [89].

70

«Responsible Minerals Sourcing.»

71

Liu, «Chinese Mining Dump.»

72

«Bayan Obo Deposit.»

73

Maughan, «Dystopian Lake Filled by the World’s Tech Lust.»

74

Hird, «Waste, Landfills, and an Environmental Ethics of Vulnerability,» 105.

75

Abraham, Elements of Power, 175.

76

Abraham, 176.

77

Simpson, «Deadly Tin Inside Your Smartphone.»

78

Hodal, «Death Metal.»

79

Hodal.

80

Tully, «Victorian Ecological Disaster.»

81

Starosielski, Undersea Network, 34.

82

See Couldry and Mejías, Costs of Connection, 46.

83

Couldry and Mejías, 574.

84

For a superb account of the history of undersea cables, see Starosielski, Undersea Network.

85

Dryer, «Designing Certainty,» 45.

86

Dryer, 46.

87

Dryer, 266-68.

88

More people are now drawing attention to this problem – including researchers at AI Now. See Dobbe and Whittaker, «AI and Climate Change.»

89

See, as an example of early scholarship in this area, Ensmenger, «Computation, Materiality, and the Global Environment.»

90

Hu, Prehistory of the Cloud, 146.

91

Jones, «How to Stop Data Centres from Gobbling Up the World’s Electricity.» Some progress has been made toward mitigating these concerns through greater energy efficiency practices, but significant long-term challenges remain. Masanet et al., «Recalibrating Global Data Center Energy – Use Estimates.»

92

Belkhir and Elmeligi, «Assessing ICT Global Emissions Footprint»; Andrae and Edler, «On Global Electricity Usage.»

93

Strubell, Ganesh, and McCallum, «Energy and Policy Considerations for Deep Learning in NLP.»

94

Strubell, Ganesh, and McCallum.

95

Sutton, «Bitter Lesson.»

96

«AI and Compute.»

97

Cook et al., Clicking Clean.

98

Ghaffary, «More Than 1,000 Google Employees Signed a Letter.» See also «Apple Commits to Be 100 Percent Carbon Neutral»; Harrabin, «Google Says Its Carbon Footprint Is Now Zero»; Smith, «Microsoft Will Be Carbon Negative by 2030.»

99

«Powering the Cloud.»

100

«Powering the Cloud.»

101

«Powering the Cloud.»

102

Hogan, «Data Flows and Water Woes.»

103

«Off Now.»

104

Carlisle, «Shutting Off NSA’s Water Gains Support.»

105

Materiality is a complex concept, and there is a lengthy literature that contends with it in such fields as STS, anthropology, and media studies. In one sense, materiality refers to what Leah Lievrouw describes as «the physical character and existence of objects and artifacts that makes them useful and usable for certain purposes under particular conditions.» Lievrouw quoted in Gillespie, Boczkowski, and Foot, Media Technologies, 25. But as Diana Coole and Samantha Frost write, «Materiality is always something more than ‘mere’ matter: an excess, force, vitality, relationality, or difference that renders matter active, self-creative, productive, unproductive.» Coole and Frost, New Materialisms, 9.

106

United Nations Conference on Trade and Development, Review of Maritime Transport, 2017.

107

George, Ninety Percent of Everything, 4.

108

Schlanger, «If Shipping Were a Country.»

109

Vidal, «Health Risks of Shipping Pollution.»

110

«Containers Lost at Sea–2017 Update.»

111

Adams, «Lost at Sea.»

112

Mumford, Myth of the Machine.

113

Labban, «Deterritorializing Extraction.» For an expansion on this idea, see Arboleda, Planetary Mine.

114

Ananny and Crawford, «Seeing without Knowing.»

Атлас искусственного интеллекта: руководство для будущего

Подняться наверх