Читать книгу Тайна жизни: Как Розалинд Франклин, Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК - - Страница 3

Часть I
Пролог
[1]
Действующие лица

Оглавление

Каждому школьнику известно, что ДНК – очень длинное химическое послание, записанное четырехбуквенным алфавитом… Теперь, когда ответ известен, понятно, в чем были ошибки… Путь к успеху в теоретической биологии чреват ловушками.

ФРЭНСИС КРИК[3]{3}

28 февраля 1953 г. вскоре после того, как церковные колокола пробили полдень, двое мужчин кубарем скатились по лестнице Кавендишской лаборатории Кембриджского университета. Их переполняло ликование. Они только что совершили открытие всей своей жизни и жаждали рассказать о нем коллегам. Первым, бухнув подошвами об пол, достиг первого этажа Джеймс Уотсон, 25-летний американский биолог из Чикаго. От него на шаг отстал спускавшийся более осторожно Фрэнсис Крик, 37-летний английский физик из Уэстон-Фавелла близ Нортгемптона{4}.

Если бы это был эпизод из голливудского кино, то сначала показали бы Кембриджский университет с высоты птичьего полета, потом виды уютных английских садов Клэр-колледжа, в котором когда-то квартировал Уотсон. Затем камера скользила бы вдоль мелководной реки Кем, на мгновение выхватив фигуру человека на узкой плоскодонке, плывущей вниз по течению. Дальше показались бы великолепные прибрежные луга возле Тринити-колледжа и Королевского колледжа, и взгляд последовал бы вверх, к бесчисленным каменным шпилям.

Эти двое, мчащиеся что есть духу, так что галстуки съехали набок и полы пиджаков колотятся за спиной, выскакивают из готического портала Кавендишской лаборатории. Вот они несутся по Фри-Скул-лейн – короткой извилистой дорожке, выложенной истертыми и неровными каменными плитами. Миновав плотную группу старых деревьев, затеняющих приходскую церковь Св. Бенедикта, квадратная башня которой была выстроена в 1033 г., то есть еще в англосаксонский период, парочка обегает кованую ограду, у которой скопились велосипеды – основное средство передвижения для многих кембриджских студентов, аспирантов и профессоров.

Целью этого забега тем ветреным, но необыкновенно солнечным для февраля днем был паб Eagle{5} на северной стороне Бенет-стрит – всего в сотне шагов от Кавендишской лаборатории. Это заведение, впервые распахнувшее двери в 1667 г. и называвшееся тогда Eagle and Child, привлекало посетителей главным образом тем, что пиво стоило пенни за три галлона[4]. Именно там любили промочить горло кембриджские преподаватели и студенты. Во время Второй мировой войны паб Eagle оказался неофициальной штаб-квартирой подразделений Королевских военно-воздушных сил Великобритании (ВВС), расквартированных поблизости. Стены одного из его залов покрыты написанными, выжженными и выцарапанными именами, рисунками, номерами эскадрилий и прочими граффити. Некий безвестный пилот умудрился изобразить на потолке соблазнительную полуголую женщину.

Шесть дней в неделю Уотсон и Крик перекусывали в уютном закутке между залом для служащих ВВС и баром из дуба, уставленным разноцветными бутылками пива всевозможных видов и сортов. Когда 28 февраля они сюда прибежали, Eagle был битком набит преподавателями и научными сотрудниками, поглощавшими сосиски с пюре, рыбу с жареным картофелем, пирог с говядиной и почками и прочие блюда обеденного меню. За едой и питьем блистательные умы Кембриджа громко обсуждали едва ли не все стороны человеческого существования.

Джеймс и Фрэнсис явились туда, чтобы поднять еще больше шума. Они только что открыли структуру дезоксирибонуклеиновой кислоты (ДНК). Фрэнсис как на крыльях влетел в паб, крича во все горло: «Мы раскрыли тайну жизни!»[5]{6} Так описывал случившееся Уотсон, хотя Крик всю жизнь вежливо, но твердо отрицал, что заявлял подобное в тот судьбоносный день{7}.

Подобное бахвальство не одобрялось кембриджскими учеными, кодексу поведения которых Крик, впрочем, следовал далеко не всегда. Однако бесспорно, что в тот день Уотсон и Крик действительно раскрыли тайну жизни или, по крайней мере, ее главный биологический секрет. Установление структуры ДНК лежит в русле давно известной, но не утратившей своего значения максимы: в биологии, не зная строения или анатомии объекта, невозможно понять его функцию (и влиять на нее). Практически все достижения в современном понимании процесса передачи генетической информации основываются на эпохальном открытии структуры ДНК. Вряд ли кто не согласится с тем, что 28 февраля 1953 г. в истории науки – да, собственно говоря, и в истории человечества – словно зажегся свет. И после этого представления о наследственности, живом организме и жизни вообще не могли остаться прежними. Изменилось все, как будто исчезла вековая тьма{8}.

Открытие двойной спирали объяснило ключевую роль ДНК в процессе деления живой клетки на две новые, каждая из которых содержит копию родительской ДНК и обладает свойствами исходной клетки. Молекула ДНК построена из единиц, называемых нуклеотидами; каждый нуклеотид состоит из остатка сахара, соединенного через фосфатную группу (включает атом фосфора и четыре связанных с ним атома кислорода) с азотистым основанием. Азотистые основания в ДНК имеются двух типов: пуриновые (гуанин и аденин) и пиримидиновые (цитозин и тимин). Пуриновые основания одной цепи двойной спирали соединены водородными связями с противолежащими пиримидиновыми основаниями другой цепи, как ступеньки винтовой лестницы, перила которой образованы чередующимися сахарными остатками и фосфатными группами. В обеих цепях этой длинной молекулы ДНК пуриновые и пиримидиновые основания расположены не случайным образом, а в определенной последовательности, которая и содержит информацию о свойствах клетки.

Порядок расположения миллиардов нуклеотидов, соединенных в молекулы ДНК, и несет то, что называют тайной жизни, – генетический код. В конечном счете открытие Уотсона и Крика привело к формуле, которая сыграла в генетике ту же роль, что формула E = mc2 в физике: ДНК –> РНК –> белок. Ее Крик впоследствии назвал «центральной догмой молекулярной биологии».


На протяжении первой половины XX столетия в науке царили физики{9}. Они потрясли мир важными открытиями – атома, рентгеновского излучения и радиоактивности, фотоэлектрического эффекта, специальной и общей теории относительности, а тех, кто занимался количественными характеристиками подобных фундаментальных физических явлений, – еще и принципом неопределенности. Эти достижения радикально изменили представления о природе и придали науке такую роль в обществе, о которой в 1900-е гг. и помыслить было невозможно{10}.

Знаковым триумфом современной физики стала квантовая механика. Ее создали (и переработали, включив другие теории) датчанин Нильс Бор, австриец Эрвин Шрёдингер, немцы Макс Планк, Альберт Эйнштейн и Вернер фон Гейзенберг, уроженец Будапешта Лео Силард и многие другие. Эти ученые стремились объяснить физический мир, проникнув в его структуру на недоступную человеческому глазу глубину: внутрь атома и его компонентов – электрона, нейтрона, протона, а также открытых позднее других субатомных частиц, в частности кварков и бозона Хиггса. Они предложили ряд головокружительных математических абстракций, чтобы объяснять и даже предсказывать явления, изучаемые естественными науками. Поэтому на весь мир прославились именно физики-теоретики, а не безымянные труженики, добывавшие экспериментальные данные, необходимые для доказательства их блестящих теорий{11}.

В годы Второй мировой войны физики стран-союзниц вместе с математиками, химиками и инженерами сконструировали радиолокатор, гидролокатор, реактивный двигатель, развили химию и производство пластиков и пластмасс, значительно развили электронику и использование электромагнетизма, взломали коды немецкой шифровальной машины «Энигма» с помощью совершенно новой технологии{12}. Наконец, американские физики, работавшие в Лос-Аламосе (штат Нью-Мексико), Окридже (штат Теннесси) и Хэнфорде (штат Вашингтон), разработали атомную бомбу. Увы, ее первое применение в военных целях было чудовищным: оно уничтожило японские города Хиросиму и Нагасаки.

Осознав ужасный результат своей работы, многие из этих ученых поклялись никогда больше не заниматься оружием. Фокус научных исследований сместился к изучению механизмов жизни на уровне молекул, из которых состоят кровь, мышцы, нейроны, прочие ткани, органы и клетки тела. По воспоминаниям Джеймса Уотсона, в научных кругах после Второй мировой войны единственным предметом всеобщего восхищения была физика. Революция в химии – следствие революции в физике. Революция в биологии, также берущая начало в физике, развернулась лишь после открытия структуры ДНК{13}.


В 1950 г. никто, включая сильнейшие научные умы планеты, не знал, как конкретно передается из поколения в поколение необходимая информация об организме и его признаках, иными словами – как работают гены. Где располагаются посредники в передаче информации: в цитоплазме клетки или в ее ядре? Как взаимодействуют эти две совершенно разные части клетки – цитоплазма и ядро? Существует ли генетический код и, если существует, как кодируется столь разнородная информация? Определяют ли деление клетки белки с их невероятно сложными молекулами, состоящими из соединенных в длинные цепочки аминокислотных остатков, из которых в принципе возможно создать практически бесконечное число комбинаций? Или главную роль играет малоизученная ДНК? Если верно последнее, то каким образом ДНК переносит сложную генетическую информацию, ведь она содержит лишь четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин)? Не слишком ли у нее бедный, примитивный химический язык, чтобы служить Розеттским камнем для разгадывания тайны жизни?

Пожалуй, самый наглядный пример непростого пути от физики к биологии – Эрвин Шрёдингер. Из его достижений наиболее известно уравнение, позволяющее рассчитать волновую функцию системы, а также мысленный эксперимент под названием «кот Шрёдингера»{14}, выразивший его растущее недовольство квантовой теорией. В 1933 г. он получил[6] Нобелевскую премию по физике за открытие новых продуктивных форм атомной энергии{15}. Шрёдингер вошел в анналы биологии в 1944 г., когда увидела свет его небольшая книга «Что такое жизнь с точки зрения физики»[7] (What Is Life?: The Physical Aspect of the Living Cell), основанная на цикле лекций, прочитанных им в 1943 г. в Тринити-колледже Дублина{16}. Никакая другая публикация не может сравниться с ней по колоссальному влиянию на понимание молекулярной биологии. И Джеймс Уотсон, и Фрэнсис Крик, и Морис Уилкинс отмечали, что книга Шрёдингера произвела на них ошеломляющее впечатление и оказала громадное влияние на их научное мировоззрение.

В этой книге описана работа американского биофизика немецкого происхождения Макса Дельбрюка и поставлены четыре ключевых вопроса: 1. Что такое ген? 2. Является ли ген наименьшей единицей передачи наследственной информации? 3. Из каких молекул и атомов состоят гены? 4. Как родительские признаки передаются потомству и далее из поколения в поколение? В качестве ответа Шрёдингер постулировал существование апериодического кристалла или твердого тела, гена или, может быть, целого хромосомного волокна, состоящего из молекул, повторяющихся или выстроенных в определенным образом организованную последовательность{17}. Далее он предположил, что в химических связях этих генов заключена генетическая информация, управляющая жизнью, болезнями и репродукцией. Эта направленность мысли убедила молодого Джеймса Уотсона (и многих других ученых), что принципиально важно установить точное взаимное расположение атомов, из которых состоит ген, – не только многочисленные химические связи, но и их конкретную пространственную организацию.

С 1947 г. Совет по медицинским исследованиям Великобритании выделял физическому факультету Королевского колледжа Лондонского университета 22 000 фунтов на биофизические эксперименты по изучению живых клеток, их компонентов и продуктов жизнедеятельности. Одной из задач, на которые предоставлялся этот грант, было определение структуры ДНК и ее роли в жизни клетки{18}. В Королевском колледже Лондонского университета было самое лучшее оборудование, лучшие образцы ДНК и сотрудники, способные решить эту задачу старым добрым научным подходом – путем постепенного накопления данных. К сожалению, их работе препятствовали непростые отношения двух главных исследователей: нервозного, надменного Мориса Уилкинса и злой на язык, придирчивой Розалинд Франклин. Любое их взаимодействие портила цепная реакция споров и раздоров из-за гендерных и культурных различий, стремления к доминированию и шаткой расстановки сил, что тормозило исследовательскую работу.

Между тем в Кавендишской лаборатории Кембриджского университета случайно возник тандем Джеймса Уотсона и Фрэнсиса Крика. Оба были способны договорить фразу собеседника еще до того, как она прозвучала, и их руководители, которым надоела такая манера дискутировать, посадили их вместе в отдельный кабинет. Кавендишская лаборатория тоже получила щедрый грант Совета по медицинским исследованиям, но ее отделу биофизических исследований поручено было выяснять строение гемоглобина – содержащегося в эритроцитах белка, который связывает и переносит кислород. У Уотсона не лежала душа к этой работе, и он нарушил правила, принятые в британском научном сообществе, согласно которым нельзя посягать на тему исследований, порученную другому подразделению. Дерзкий уроженец Среднего Запада США, одержимый желанием раскрыть тайну ДНК, был готов добиться успеха, чего бы это ни стоило. Он пренебрег джентльменским кодексом академической среды еще и тем, что использовал экспериментальные данные, полученные Розалинд Франклин, без ее ведома.

За океаном, в США, в Калифорнийском технологическом институте, структурой биологических макромолекул занимался Лайнус Полинг, считавшийся величайшим химиком в мире. В 1951 г., располагая полным доверием и поддержкой Фонда Рокфеллера, группа Полинга обошла Кавендишскую лабораторию, открыв спиральную конфигурацию в структуре белков{19}. В 1953 г. роли переменились: Полинг выдвинул гипотезу о структуре ДНК, оказавшуюся ошибочной, а в Кембридже вышли на верную дорогу.


Через пятнадцать лет после открытия структуры ДНК Уотсон рассказал об этом в неотразимо убедительной книге воспоминаний. Читателю может показаться, что она написана им еще в молодости, но Уотсон работал над книгой, будучи уже почти 40-летним профессором в Гарвардском университете. И в 1968 г. вышел в свет эпохальный бестселлер «Двойная спираль. Воспоминания об открытии структуры ДНК»{20}. Как описание научного расследования «Двойная спираль» – шедевр и гарантия того, что в дальнейшем в любой истории о ДНК голос Уотсона окажется самым громким. А если вернуться к аналогии с Голливудом, то сюжет книги Уотсона можно резюмировать, скажем, так: парни знакомятся с девушкой, терпят от нее унижение, твердо решают победить – и побеждают.

16 мая 2016 г. светила молекулярной биологии собрались в Колд-Спринг-Харборской лаборатории на мероприятии под названием «Чествование Фрэнсиса Крика», которое проводилось в связи со столетием со дня его рождения (он умер в возрасте 88 лет 28 июня 2004 г.). В этом научном комплексе, спрятавшемся среди деревьев на северном побережье Лонг-Айленда, исследовали генетические аспекты жизни и болезней. Самое высокое здешнее здание – часовая башня из красного кирпича и терракоты с винтовой лестницей. На каждой из четырех стен башни прикреплены таблички из зеленого коннемарского мрамора с буквами a, t, g, c, обозначающими азотистые основания ДНК – аденин, тимин, гуанин и цитозин. Это, в сущности, памятник Уотсону. Правда, он был недоволен тем, что строители использовали строчные буквы вместо прописных, как принято делать после опубликования статьи Уотсона и Крика с описанием их открытия в журнале Nature за 25 апреля 1953 г.

Открыл встречу в Колд-Спринг-Харборе, устроенную в красивой новой аудитории, 88-летний Джеймс Уотсон, к которому, как к «королю Джеймсу», было приковано внимание публики. Колд-Спринг-Харборская лаборатория была его никем не оспариваемым научным царством.

Уотсон начал речь с истории о пабе Eagle, повторив то, что рассказано в знаменитой книге «Двойная спираль». Однако на сей раз он признался, что для драматического эффекта выдумал восклицание Фрэнсиса Крика о разгадке тайны жизни{21}. Через два года летом, сидя в тени часовой башни с ее «двойной спиралью» лестницы, он пояснил: «Фрэнсис мог бы сказать именно так и сказал бы. То, что я написал, было совершенно в его духе, и любой согласится с этим»{22}.

Но первое заявление об одном из величайших научных достижений XX в. было сделано не в той форме, в которой его представляют по книге. Этот мифический эпизод, как и многие другие детали эпохального поиска структуры ДНК, долго приукрашивался, видоизменялся и шлифовался. В ворохе воспоминаний, биографий и журналистских пересказов история открытия ДНК преподносится с точки зрения то одного, то другого участника, так что к настоящему времени она уже превратилась в подобие фильма «Расёмон». Мнение дилетанта во многом зависит от того, чью версию событий он узнал последней.

Джеймс Уотсон часто отмахивался от своих хулителей, саркастически замечая: «Есть лишь молекулы. Все остальное – социология»{23}. Однако череда поступков человека редко следует в столь ограниченном русле. В молодые годы этими увлеченными блестящими учеными сделано множество шагов: какие-то из них в свое время казались ключевыми, тогда как другие – преходящими или несущественными, однако были признаны важными много лет спустя. Стечения обстоятельств становились определяющими, а обстоятельства, долгое время бывшие в центре внимания, в конечном счете не имели значения. На этом пути случайно сходились нужные люди в нужное время и поднималась радостная шумиха или же попадались не те люди не в то время и воцарялось уныние. Были вспышки побед и бесплодные периоды неудач, проявления дружбы и мелкие распри. Кроме того, вокруг открытия строения ДНК прослеживается цепь событий, движимых не самыми благовидными поступками ее участников, боровшихся за первенство{24}. Погребенное под напластованиями толкований, объяснений и заблуждений установление молекулярной структуры ДНК – один из самых запутанных сюжетов в истории науки.

Пора наконец рассказать, как все было на самом деле.

Тайна жизни: Как Розалинд Франклин, Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК

Подняться наверх