Читать книгу Формула F: Оптимизация путей и связей в графовых алгоритмах. Остовные деревья в графовых алгоритмах - - Страница 4

Разбор формулы F

Оглавление

Шаг 1: Вычисление суммы e^d для всех ребер

Для расчета значения формулы F, нам необходимо сначала вычислить сумму e^d для всех ребер графа. Здесь e представляет вес ребра, а d – расстояние между вершинами, соответствующими данному ребру.


Процесс вычисления:


1. Начинаем сумму с нулевого значения: sum = 0.

2. Перебираем все ребра в графе и для каждого ребра выполняем следующие шаги:

– Получаем вес ребра e.

– Получаем расстояние между соответствующими вершинами d.

– Вычисляем значение e^d, где e – основание экспоненты, а d – показатель степени. Это можно сделать с помощью математической функции exp(e*d).

– Добавляем полученное значение e^d к общей сумме: sum = sum + e^d.

3. После перебора всех ребер, мы получим общую сумму e^d.


После выполнения шага 1 мы получим значение суммы e^d для всех ребер графа, которое будет использовано в дальнейших вычислениях формулы F.

Шаг 2: Деление полученного значения на количество вершин

Для продолжения вычисления формулы F, после того как мы получили сумму e^d для всех ребер графа, необходимо разделить это значение на количество вершин в графе.


Процесс вычисления:


1. Получаем значение суммы e^d, которое было вычислено на предыдущем шаге.

2. Получаем количество вершин в графе, обозначенное как n.

3. Выполняем деление суммы e^d на количество вершин: sum/n.


Теперь мы получаем значение sum/n, которое представляет собой результат деления суммы e^d на количество вершин в графе. Это значение будет использовано в следующих шагах для дальнейшего вычисления формулы F.

Шаг 3: Нахождение максимального и минимального расстояний между вершинами

Для продолжения вычисления формулы F, нам необходимо найти максимальное и минимальное расстояния между вершинами графа, обозначенные как max (d) и min (d) соответственно.


Процесс вычисления:


1. Инициализируем переменные max_d и min_d значением первого расстояния между вершинами в графе.

2. Перебираем все оставшиеся расстояния между вершинами в графе и для каждого расстояния выполняем следующие шаги:

– Если текущее расстояние больше значения max_d, то обновляем max_d значением текущего расстояния.

– Если текущее расстояние меньше значения min_d, то обновляем min_d значением текущего расстояния.

3. После перебора всех расстояний, мы получим значения max_d и min_d, которые представляют собой максимальное и минимальное расстояния между вершинами в графе.


После выполнения шага 3 мы получим значения max (d) и min (d), которые будут использоваться в следующих шагах для дальнейшего вычисления формулы F.

Шаг 4: Вычитание максимального расстояния на минимальное из предыдущего значения

Для продолжения вычисления формулы F, после того как мы нашли максимальное и минимальное расстояния между вершинами, необходимо вычесть максимальное расстояние на минимальное из полученного ранее значения.

Формула F: Оптимизация путей и связей в графовых алгоритмах. Остовные деревья в графовых алгоритмах

Подняться наверх