Читать книгу Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - Антон Владзимирский - Страница 4
ОБЩИЕ ПОЛОЖЕНИЯ
ОглавлениеВ последнее время стали популярными такие слова, как искусственный интеллект, машинное обучение, большие данные (big data). Эти термины входят в повседневное употребление и уже встречаются не только в узконаправленных специализированных областях. Не стала исключением и сфера здравоохранения: автоматизированные системы диагностики, системы распознавания медицинских записей и естественного языка, системы анализа и предсказания событий, автоматической классификации и сверки информации, чат-боты поддержки пациентов, электронная медицинская карта и многое другое – результаты масштабной цифровизации в данной сфере4,5. Столь мощный прогресс цифровых технологий в Российской Федерации поддерживается Национальной стратегией развития искусственного интеллекта на период до 2030 года [1].
Искусственный интеллект (ИИ) – комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека. Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в том числе в котором используются методы машинного обучения), процессы и сервисы по обработке данных и поиску решений [1].
Технологии искусственного интеллекта (ТИИ) – технологии, основанные на использовании искусственного интеллекта, включая компьютерное зрение, обработку естественного языка, распознавание и синтез речи, интеллектуальную поддержку принятия решений и перспективные методы искусственного интеллекта [1].
В соответствии с Национальной стратегией использование технологий искусственного интеллекта в социальной сфере способствует созданию условий для улучшения уровня жизни населения, в том числе за счет повышения качества услуг в сфере здравоохранения, включая профилактические обследования, диагностику, основанную на анализе изображений, прогнозирование возникновения и развития заболеваний, подбор оптимальных дозировок лекарственных препаратов, сокращение угроз пандемий, автоматизацию и точность хирургических вмешательств.
Основные факторы развития ТИИ – это увеличение объема доступных данных, в том числе данных, прошедших разметку и структурирование, а также постоянное развитие информационно-телекоммуникационной инфраструктуры для обеспечения доступа к наборам таких данных.
С развитием медицины, повышением ее доступности и повсеместного внедрения цифровых технологий в медицинскую практику6 отмечается высокий рост количества медицинских данных: клинических, лабораторных и инструментальных7. Данные – представление информации в формализованном виде, пригодном для передачи, интерпретации и обработки [2].
Большой объем данных способствует оптимальной организации интересующей сферы (в частности, здравоохранения) для достижения наилучших результатов работы. Данные могут быть использованы для прогнозирования текущих тенденций определенных параметров и будущих событий. В последние годы в медицинской практике активно внедряются электронные медицинские карты и медицинские информационные системы, что приводит к необходимости стандартизации медицинской информации.
Например, результаты лабораторных (патоморфологические исследования, клинические анализы, генетические исследования и т.д.), лучевых (КТ, МРТ, ММГ, УЗИ, рентгенография и т.д.) и сигнальных (ЭКГ, ЭЭГ, ЭНМГ и т.д.) исследований максимально стандартизованы и оцифрованы, что способствует росту количества данных по этим направлениям, инструментов для их обработки (программное обеспечение, предназначенное для обработки медицинских данных), передачи и хранения, и, как следствие, развитию ТИИ в этой области8.
Внедрение ТИИ в сферу здравоохранения позволяет повысить качество предоставляемых услуг [1], а также снизить нагрузку на врачей. Например, при скрининге рака молочной железы требуется «двойное чтение» результатов маммографических исследований, т.е. каждое исследование должно быть просмотрено двумя специалистами.
Однако многочисленные исследования9 показывают, что одно чтение можно доверить ПО на основе ТИИ, при этом качество скрининга не ухудшается10. Другой пример успешного применения ПО на основе ТИИ – пандемия COVID-19: в условиях острой нехватки медицинского персонала применение ТИИ позволило уменьшить время обработки заключения КТ11, а также осуществить сортировку исследований, благодаря чему исследования пациентов в более тяжелом состоянии обрабатывались в первую очередь [3].
Однако для успешного применения ТИИ необходимо создание релевантных, репрезентативных, корректно размеченных наборов данных (НД).
НД используются не только для разработки и обучения ПО на основе ТИИ, но и их валидации, т.е. проверки качества работы ПО. Благодаря Национальной стратегии развития искусственного интеллекта в Российской Федерации стало возможным активное создание и внедрение в повседневную практику таких НД, а также инструментов их хранения, администрирования и использования.
На первый взгляд может показаться, что создание НД – несложный процесс: ведь ежедневно генерируются терабайты данных медицинской информации, а применение МИС позволяет их хранить, передавать и использовать (например, данные лучевой диагностики медицинских организаций ДЗМ хранятся в Едином радиологическом информационном сервисе – ЕРИС ЕМИАС). Тем не менее процесс создания НД (не стоит забывать о том, что они должны быть релевантными, репрезентативными и корректно размеченными) – очень сложный, имеет множество важных аспектов и вовлекает в себя большое количество специалистов, как медицинских (врачи, лаборанты), так и технических (инженеры, разработчики, аналитики и т.д.), а также смежных направлений (биофизики, кибернетики, биоинформатики).
Кроме того, недостаточно создать НД – необходимо уделить внимание инфраструктуре и инструментам хранения, использования и управления, таким, например, как библиотеки и реестры. Их основными задачами являются аннотация, интеграция и представление НД для контроля качества, удобного и повсеместного использования, в том числе для ПО на основе ТИИ.
Методологии создания наборов данных для сферы здравоохранения продолжают формироваться и в настоящее время, прежде всего – на основе масштабных научных исследований. Так, в основу настоящего учебного пособия положены результаты «Эксперимента по использованию инновационных технологий в области компьютерного зрения для анализа медицинских изображений и дальнейшего применения в системе здравоохранения города Москвы» (mosmed.ai) – крупнейшего в мире проспективного многоцентрового клинического исследования технологий искусственного интеллекта [3].
4
Гусев А. В. Перспективы нейронных сетей и глубокого машинного обучения в создании решений для здравоохранения // Врач и информационные технологии. 2017. №3. С. 92—105 URL: https://www.idmz.ru/jurnali/vrach-i-informatsionnye-tekhnologii/2017/3/perspektivy-neironnykh-setei-i-glubokogo-mashinnogo-obucheniia-v-sozdanii-reshenii-dlia-zdravookhraneniia.
5
Гусев А. В., Добриднюк С. Л. Искусственный интеллект в медицине и здравоохранении // Информационное общество. 2017. №4—5. С. 78—93.
6
Соболева С. У., Голиков В. В., Тажибов А. А. Информационные технологии в здравоохранении: особенности отраслевого применения // E-Management. State University of Management, 2021. Т. 4, №2. С. 37—43.
7
Dash S., Shakyawar S. K., Sharma M. et al. Big data in healthcare: management, analysis and future prospects // J Big Data. SpringerOpen. 2019. Vol. 6, №1. P. 1—25.
8
Shakhabov I. V., Melnikov Yu. Yu., Smyshlyaev A. V. Development of digital technologies in healthcare during the COVID-19 pandemic // Scientific Review. Medical Sciences. 2020. №6. P. 66—71.
9
Henriksen E. L. Carlsen F., Vejborg I. M. et al. The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review // Acta radiol. 2019. Vol. 60, №1. P. 13—18.
10
Lauritzen A. D., Rodríguez-Ruiz A., von Euler-Chelpin M. C. et al. An Artificial Intelligence—based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload // Radiology. 2022. Vol. 304, №1. P. 41—49.
11
Морозов С. П., Гаврилов А. В., Архипов И. В. [и др.]. Влияние технологий искусственного интеллекта на длительность описаний результатов компьютерной томографии пациентов с COVID-19 в стационарном звене здравоохранения // Профилактическая медицина. 2022. Т. 25, №1. С. 14—20.