Читать книгу Ландшафты мозга. Об удивительных искаженных картах нашего мозга и о том, как они ведут нас по жизни - - Страница 4
1
Атлас человека: что такое карты мозга?
ОглавлениеК ак и многие другие научные открытия, обнаружение скрытых от глаз карт мозга было связано со случайностью и страданием. Первые карты были найдены благодаря двум вещам – пулям и слепоте. История их пересечения показывает, что такое карта мозга и в чем ее смысл. Шел 1904 год. Две империи – Россия и Япония – вели войну за владычество на суше и на море. С ростом числа ранений японские власти обратили внимание на одну странность: появилось удивительно большое количество частично или полностью ослепших раненых. Во многих случаях, как и следовало ожидать, слепота явилась следствием повреждения глаз[1]. Но почти четверть случаев была связана с повреждением мозга, причем доля таких раненых была выше, чем в предыдущих войнах.
Этот факт отражал изменения в вооружении. Русские использовали оружие нового образца – скорострельные винтовки Мосина, модель 91. Пули для такой винтовки имели диаметр 7,6 миллиметра, что меньше, чем в предыдущих моделях. Они вылетали из ствола с начальной скоростью 620 метров в секунду и быстрее достигали цели. Это позволило русским стрелять быстрее и попадать в цель. Но одновременно изменился и характер ранений. Раньше пули, попадавшие в голову, разбивали череп или вызывали ударную волну, сильно повреждавшую мозг. При стрельбе из винтовки Мосина 91 этого не происходило. Новые пули проскальзывали через кости и мозг, оставляя небольшие аккуратные отверстия, как ровные дырочки на бумажной мишени. И поэтому многие солдаты выживали после ранения в голову и их ранения в меньшей степени сопровождались нарушениями мышления и восприятия, чем у людей с ранениями головы в предыдущих войнах.
Японские солдаты с ранениями определенной части головы сообщали об ухудшении зрения. У них в поле зрения возникали провалы – слепые пятна, называемые скотомами, которые перемещались в поле зрения при переводе взгляда с одной точки на другую. Скотома может возникать при повреждении глазного яблока. Однако эти конкретные скотомы были вызваны ранениями в странном месте – в задней части головы, далеко от глаз.
Эти провалы в поле зрения по размеру и локализации были разными у разных пациентов. У одного мужчины скотома располагалась в дальнем правом углу поля зрения, и куда бы он ни смотрел, предметы с правой стороны оказывались скрыты. Другой не мог видеть предмет, находившийся прямо перед ним; если он пытался смотреть прямо на напечатанное слово или на лицо жены, темное пятно все закрывало.
Такие скотомы нарушали зрение пациентов вне зависимости от того, пытались ли они смотреть только левым глазом, только правым глазом или обоими одновременно. Стало ясно, что эти повреждения остаются на всю жизнь. Для компенсации увечий и ввиду отсутствия возможности для этих людей зарабатывать на жизнь в будущем правительство Японии постановило выделить им более высокую пенсию, что было сложным предприятием для бюрократической империи. Для определения размера пенсии каждому солдату нужно было документально засвидетельствовать локализацию скотомы и ее размер.
Мрачная обязанность по сбору этой информации выпала на долю доктора Тацудзи Иноуэ – молодого офтальмолога, который к началу войны только закончил учиться. Иноуэ стал проверять поля зрения раненых солдат. Поле зрения – это диапазон видимости во всех направлениях, достижимый для человека без поворота головы. Когда мы смотрим на какую-то точку в пространстве, мы при этом видим еще что-то выше, ниже, слева и справа от нее. При нормальном зрении мы лучше видим то, что расположено в центре, т. е. в той точке, на которую смотрим. Однако мы одновременно получаем зрительную информацию из точек пространства, отдаленных от центра поля зрения, как говорится, замечаем что-то “краем глаза”. Специалисты по зрению и офтальмологи называют эти отдаленные от центра участки поля зрения периферией. Таким образом, поле зрения складывается из центральной области и периферии. Офтальмологи могут исследовать поле зрения разными способами: направлять луч света в разные участки поля зрения пациента или указывать на эти участки пальцем с просьбой их назвать. Если пациент не видит объекты в какой-то части поля (скажем, в нижней левой зоне), возможно, у него есть скотома.
По долгу службы армейского врача Иноуэ бесчисленное множество раз обследовал поля зрения пациентов с пулевыми ранениями головы или другими травмами и составил об этом подробный отчет. Хотя правительству нужны были лишь данные для определения размера пенсии, молодой врач рассудил, что эта информация может помочь разрешить давнюю научную загадку: где в человеческом мозге находится центр зрительного восприятия и как именно представляется там зрительное изображение? Ученые искали ответы на эти вопросы на протяжении десятилетий. Они предполагали, что в мозге есть карта зрительной информации, однако ее точная локализация и строение оставались неизвестными.
Карта – это пространственное отображение чего-либо. Следовательно, карта мозга – это пространственное отображение чего-то в мозге. У мозга есть размер и форма, задняя и передняя части, верх и низ. Поэтому достаточно легко представить себе, что в мозге есть некая пространственная структура – нечто, что занимает место на его поверхности, в пучках и складках. Но что происходит, когда мозг отображает что-то из внешнего мира – будь то след краски или звук сирены?
Ответ на этот вопрос начинается не в мозге, а в других частях тела. Точнее, в тех ключевых участках, где тело соприкасается с внешним миром. Самая обширная и очевидная зона контакта – это кожа, но также сетчатка, расположенная на дне глазных яблок. А еще улитка в глубине каждого уха. И тонкие ткани, выстилающие изнутри наши ноздри, и влажные поверхности языка и ротовой полости. Именно здесь все происходит. Эти поверхности – входные двери, через которые мы получаем информацию из внешнего мира. Эти поверхности покрыты чувствительными рецепторными клетками, которые детектируют во внешнем мире информацию и передают ее в мозг в виде внутренних сообщений. Эти рецепторы чрезвычайно ценны. Без них наша жизнь протекала бы в отрыве от внешнего мира.
Давайте поближе рассмотрим один элемент, связывающий нас с реальностью, – кожу. Кожа имеет непрерывную поверхность. Если вы посмотрите на какую-то специфическую точку кожи, с большой вероятностью слева и справа, выше и ниже тоже будет кожа. Конечно же, разрывы есть, такие как глаза, рот и ноздри. Но вокруг них кожа продолжается, как вокруг озера продолжается берег. Кожа стопы прилегает к коже щиколотки, а та соседствует с кожей голени. Иными словами, свойства кожи распространяются на непрерывную поверхность. Это означает, что кожа, как поверхность Земли или Луны, имеет топографию, или ландшафт. Представьте себе живущих на нашей коже микробов. Если бы колонии микробов умели общаться и исследовать территорию, они могли бы расчертить ландшафт (кожный покров) нашего тела и путешествовать по этой территории, ориентируясь на указатели. Хотите попасть под мышку? Возьмите вправо у пупка, а потом влево после той странной родинки.
Но хотя наша кожа непрерывна, тактильные рецепторы дискретны. В коже много тысяч рецепторов. Одни реагируют на повреждения и на сигналы боли, другие регистрируют давление, вибрацию или тепло. Рассмотрим группу рецепторов, специфическим образом реагирующих на давление и вибрацию кожи. Благодаря им мы можем чувствовать удары и отличать гладкую поверхность от шершавой. Каждый такой рецептор творит чудеса в одной конкретной точке на поверхности кожи. Рецептор на коленной чашечке правой ноги настроен на восприятие и передачу сигнала прикосновения к конкретному участку этой коленной чашечки. И все. Представьте себе его как землевладельца-затворника, притаившегося со своим ружьем: “Весь мир может делать, что ему вздумается, но если кто-то ступит ногой на мою землю, он дорого за это заплатит!”
Для этого маленького коленного рецептора важна только территория колена. Ученые называют рецептивным полем то поле (или зону), из которого клетка получает информацию. Изменение давления в рецептивном поле вызывает реакцию – клеточный сигнал. Что-то происходит! Изменение давления вне рецептивного поля ничего не вызывает. Как землевладельцы, одни рецепторы отвечают за более обширные участки, чем другие, но активность всех рецепторов ограничена только их конкретным участком кожи. Не спрашивайте рецептор колена, что происходит на спине. Он не отличит превосходный массаж от удара или от полного отсутствия контакта. Каждый чувствительный рецептор рассказывает историю только маленького участка кожи и передает ее в мозг.
Именно с этого начинается отображение. Сигналы, посылаемые одним рецептором, скажем, с кожи правого колена, отображают давление на этот участок кожи. И поэтому, если я хочу узнать, давит ли что-то на ваше колено, мне не обязательно исследовать колено. Вместо этого я могу прислушаться к сигналам, идущим от кожи к мозгу. Сигнал от этого рецептора сообщит все, что мне нужно знать об этом конкретном участке кожи. Сигнал отображает физическую силу, действующую на конкретную часть тела.
Представьте себе, что мы следуем за сигналом, отправленным рецептором вашего колена в мозг, где он достигает клетки мозга, называемой нейроном. При этом, заметьте, сигнал приходит не к первому попавшемуся нейрону. Наш ценный сигнал достигает только правильного нейрона, который специализируется на сборе информации о прикосновении, но не о свете, вкусе, запахе или звуке. Более того, этот нейрон имеет узкую специализацию и собирает информацию только о прикосновениях в области колена, но не локтя или лица. И хотя нейрон находится в мозге, а не на коже, у него есть рецептивное поле – чертеж кожи колена. И это все, что он знает; он получает информацию только об этом отдельном участке.
Аналогичным образом, когда этот нейрон готов отправлять сигнал в другие части мозга, он может сообщить только то, что знает: информацию о прикосновении к колену. Хотя нейрон находится не в колене, а в голове, его сигнал отображает тактильную информацию о колене. Когда клетка отправляет сигнал в другие части мозга, этот сигнал что-то означает. Он отображает происходящее на каком-то конкретном участке кожи. Именно в этом заключается идея об отображении в мозге, и именно это является необходимым элементом для построения карт мозга и реализации многих его функций. Если бы мозг не создавал таких отображений, мы бы не выжили. Мозг позволяет нам собирать информацию от наших чувствительных рецепторов и посылать инструкции мышцам только за счет возможности отображать, что чувствуют рецепторы и как двигаются мышцы.
Благодаря этому отображению, анализируя активность мозга человека, нейробиологи могут определять, что чувствует кожа. И также могут создавать у человека тактильные ощущения, дотрагиваясь напрямую до его мозга. И это важная сторона отображения: когда мы знаем, как это работает, мы можем регистрировать сигналы мозга и даже их изменять.
Отображение зрительных сигналов происходит примерно так же, как отображение тактильных. Зрение начинается в задней части глазного яблока. Когда крохотные частицы света, фотоны, попадают в глаз, они проходят через глазное яблоко и приземляются на тонкой ткани сетчатки. В сетчатке содержатся миллионы чувствительных рецепторов, улавливающих фотоны света.
Кожа непрерывна, и сетчатка, выстилающая заднюю часть глазного яблока, тоже представляет собой непрерывный слой. Сетчатка, как кожа, тоже характеризуется наличием топографии. В частности, в сетчатке есть заметное углубление – центральная ямка. Когда вы смотрите, скажем, на красный сигнал светофора, свет от этого источника попадает в глаз и встречается с чувствительным рецептором в центральной ямке. Поскольку свет распространяется по прямой, а рецепторы глаза зафиксированы на месте, рецептор центральной ямки улавливает и отображает только тот свет, который поступает из центра поля зрения – оттуда, куда вы смотрите в этот момент. Аналогичным образом рецептор, расположенный на отдалении от центральной ямки, обнаружит и отобразит только свет, идущий из другой точки пространства, удаленной от того места, куда направлены ваши глаза. Итак, рецепторы глаз, как и рецепторы кожи, имеют рецептивные поля, позволяющие сетчатке и в конечном итоге мозгу отображать информацию, собираемую глазами, – отображать то, что мы видим.
Но хотя кожа и сетчатка – непрерывные поверхности, наша способность чувствовать прикосновение кожей или свет глазом не является непрерывной. Она формируется как сумма маленьких сигналов, идущих от мельчайших участков. Как мозаика из цветных фрагментов, формирующих единую осмысленную картину, наши ощущения света и прикосновения составляются воедино из отдельных фрагментов информации. То же самое справедливо и в отношении слуха.
Как эти обрывки восприятия интегрируются, образуя более цельный тактильный, зрительный или звуковой опыт? Ученые пока не знают окончательного ответа на этот вопрос, но им известно, что интеграция происходит не единовременно. Мозаика информации, которую мы получаем от наших чувствительных рецепторов, складывается за несколько этапов (рис. 1). Эти этапы реализуются по мере перемещения информации об отображении из одной части мозга, имеющей свою карту, в другую часть. Возможно, кажется удивительным, что наше восприятие мира активно создается мозгом из тысяч точек, и странно представлять себе, как эти точки возникают и постепенно сливаются на нескольких картах, создавая знакомый нам опыт. Однако именно такова реальность восприятия и удивительная природа наших чувств.
Рис. 1. Схема превращения рецептивных полей в нейронные отображения в тактильной (вверху) и зрительной (внизу) системе. Художник Пол Ким.
В конце XIX века, незадолго до того, как Тацудзи Иноуэ начал изучать пулевые ранения и исследовать поля зрения, большинство ученых пришли к выводу, что зрительный образ формируется где-то в задней части мозга. Они уже знали, что отображение является пространственным и что схема образа в мозге отражает картину световых сигналов, попадающих в глаз. Однако не было известно точно, где и как располагается эта странная карта.
Шведский невропатолог Саломон Хеншен, обследовавший более сотни пациентов, правильно указал место в задней части мозга, где формируется зрительный образ[2]. Он даже предложил теорию формирования карты в этом участке, но его объяснение оказалось неверным. Повреждения мозга его пациентов были слишком разнообразными для проведения более тщательных наблюдений. Примерно через десять лет молодому Иноуэ удалось сделать то, чего не смог Хеншен, и в значительной степени его успех стал возможен благодаря жестокой эффективности новых русских винтовок. Чистые и четко очерченные отверстия от пуль, выпущенных из этих винтовок, и создаваемые ими небольшие скотомы позволили связать пулевые отверстия со слепотой и в результате обнаружить зрительные карты, спрятанные в мозге у солдат.
Иноуэ понимал, насколько важны доскональные измерения. Чтобы построить точную карту зрительного центра мозга, он должен был тщательно измерить как скотому, так и пулевое отверстие в голове каждого солдата. Измерения полей зрения уже проводились точно и регулярно, но Иноуэ нуждался в собственном методе измерения и сравнения повреждений мозга у раненых. Он придумал инструмент, названный краниокоординометром, который представлял собой набор линеек, соединенных с помощью регулируемых зажимов (рис. 2). Эта конструкция надевалась на голову человека, как шлем, и Иноуэ мог аккуратно измерять параметры разных голов. Он экстраполировал траекторию движения пули через голову и сопоставлял ее с локализацией и размером слепого участка в поле зрения каждого пациента.
В 1909 году Иноуэ опубликовал результаты осмотра 29 солдат. В его отчете содержалось подробное описание реальной карты зрительного пространства в человеческом мозге. В отличие от Хеншена, Иноуэ почти все детали установил правильно. Его карта распадается на две половины – каждая на одной стороне головы. И обе располагаются в самой задней части мозга – в области, которую теперь называют первичной зрительной корой, коротко – V1. Отображение в этой области перевернуто по сравнению с тем, что происходит в поле зрения, на котором оно основано: в тканях мозга изображение травы и земли находится над изображением неба и облаков. Изображение также перевернуто слева направо, так что правое поле зрения отображается слева, и наоборот. Более того, этот зрительный образ сильно искажен, как будто в то место, где на карту нанесена информация из центра поля зрения, положили сильное увеличительное стекло. Но открытия Иноуэ на этом не закончились. Он представил интригующие доказательства того, что карта V1 не единственная: в человеческом мозге спрятаны и другие зрительные карты.
Рис. 2. Фотография солдата, обследованного Иноуэ, на ней продемонстрировано применение краниокоординометра (слева) и показана траектория движения пули через тело солдата (справа). Источник: Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre (Зрительные нарушения как результат пулевого ранения в зрительной области коры). Leipzig: W. Engelmann, 1909.
Карты каждого из нас
Прослеживая непосредственную связь между локализацией повреждения в мозге и местом расположения слепого пятна, Иноуэ обнаружил первую из известных зрительных карт мозга. Впрочем, утверждение, что в мозге существует зрительная карта (не говоря уже о том, что их несколько), может показаться нам абсурдным. Возможно, это связано с нашим привычным опытом обращения с географическими картами. Мы привыкли к таким зрительным указателям, как туристические планы или схемы линий метро. А эти карты состоят из материи – реальной физической материи, такой как краска на бумажном листе, изготовленном из древесной целлюлозы.
Конечно, сегодня мы часто видим карты на экранах, и это показывает, в какой степени несущественно, из чего сделана карта. Когда мы загружаем на экран компьютера маршрут передвижения, этот маршрут представлен в виде световых волн разной длины, исходящих от экрана. Если мы распечатаем этот план на бумаге, чтобы взять с собой в дорогу, мы воссоздаем его на бумаге, но изображение остается тем же самым. И в этом прелесть отображения: оно позволяет нам обмениваться информацией о сущностях и явлениях без необходимости их воспроизведения. Мне не нужно заново строить пирамиды, чтобы показать вам, как они расположены в Гизе. Мне нужны лишь ручка и лист бумаги, палец и запотевшее стекло или палочка на песчаном пляже. Короче говоря, совсем не важно, из чего сделана карта. Она может быть фактически из любого материала.
Карты мозга не нарисованы на бумаге и не отображены на экране; они сделаны из клеток. В мозге содержится несколько видов клеток, половину из которых составляют нейроны. Нейроны связаны между собой красивыми ветвистыми отростками, переносящими электрические и химические сигналы от одного нейрона к другому. Нейрон может производить электрические импульсы один за другим, и скорость испускания этих импульсов зависит от той информации, которую отображает нейрон.
Когда я говорю о скорости испускания импульсов, называемой скоростью возбуждения, я сразу представляю себе школьный класс, в котором младшие школьники стараются привлечь внимание учителя: “Меня, меня, спросите меня! А меня?!” Чем чаще они выкрикивают, тем настоятельнее звучит их призыв – будь то желание ответить на вопрос учителя или просьба отлучиться в туалет. Выкрики учеников в школьном классе, как импульсы, посланные разными нейронами мозга, могут иметь совершенно разный смысл. Но в любом случае частота испускаемых сигналов отражает срочность или важность сообщения. Когда скорость возбуждения нейрона возрастает и происходит быстрый залп импульсов, значит, в этот момент нейрон хочет передать важную информацию.
Представьте себе, что мы вскрываем чей-то череп и расправляем складки задней части мозга, так что область V1 предстает в плоском виде. Эта плоская поверхность мозга состоит из нейронов, как бумага – из древесной массы. Лист нейронов аналогичен листу бумаги, на которой печатают обычную карту. Но вместо красок разного цвета карты мозга представляют информацию через частоту возбуждения нейронов, из которых они состоят: одни возбуждаются активно, а другие почти совсем не возбуждаются. В техническом аспекте частота возбуждения нейрона – это число электрических сигналов, которые он посылает за определенный промежуток времени. Можно сказать, что в картах мозга электричество и время играют такую же роль, как краска на обычных картах.
Клетки, электричество и время. Это сырье, необходимое мозгу для создания карт.
Возможно, к концепции карт мозга нужно привыкнуть. Они не похожи на обычные карты. Однако карта в области V1 по своей сути не отличается от карты в бардачке автомобиля. Аналогично тому, как мы превращаем карту на экране компьютера в карту, распечатанную на бумаге, мы переносим эту же карту с листа бумаги в область V1, просто глядя на нее. Одна не хуже другой, и все они вполне реальные.
Еще одно отличие карт мозга от обычных географических заключается в том, что первые изменчивы. Географическая карта, начерченная на папирусе или выгравированная на панно, неподвижна и неизменна. И это нормально, поскольку ландшафтные ориентиры неподвижны, а географические изменения происходят медленно. Когда такие изменения случаются, печатные карты устаревают. Они не могут автоматически обновляться, чтобы соответствовать изменениям, происходящим в мире. Так что нам остается только выбросить старые карты и сделать другие.
Но некоторые карты могут обновляться. Представьте себе карту на приборном экране автомобиля или мобильного телефона. Компьютерные карты могут обновляться и включать в себя информацию о новых торговых центрах или закрытых на ремонт съездах с шоссе. В этих картах используется технология GPS, определяющая наше теперешнее положение в пространстве. Таким образом, наша динамическая компьютерная карта обновляется по мере передвижения. Когда мы движемся к северу, карта на экране тоже движется на север, и мы всегда видим ориентиры, находящиеся в непосредственной близости от нас. Такая карта полностью сбивала бы с толку вне контекста нашего путешествия и в отрыве от знакомой и важнейшей реперной точки – нас самих. Но хотя совмещенный с GPS экран постоянно изменяется или обновляется по мере передвижения, он по-прежнему остается картой. И поскольку на нем есть точка отсчета (наше теперешнее положение в пространстве), мы без труда понимаем эту динамическую карту.
Карта области V1 тоже динамическая. Когда мы перемещаемся из одной точки в другую, обводим глазами пространство или когда движутся окружающие нас предметы, информация на карте обновляется. Но, как и в случае с экраном навигатора, изменение информации, отображаемое в зоне V1, не дезориентирует нас, поскольку оно тоже привязано к знакомой и важной точке отсчета: положению нашего тела и направлению взгляда.
Каким бы странным это ни казалось, карты могут быть сделаны из клеток мозга и могут обновляться и изменяться. Но понять концепцию карт мозга непросто еще вот почему. Даже карту, нарисованную на запотевшем стекле или прочерченную на песке, можно увидеть. Но карта V1 не подсвечивается синим светом, когда мы любуемся океаном, и не разделяется на темные квадраты, когда мы смотрим на шахматную доску. Разве карта не должна быть такой, чтобы мы могли ее видеть?
Ответ на этот вопрос отрицательный. Чтобы понять, почему это так, давайте рассмотрим один короткий мысленный эксперимент из истории разведки. Хотя мы привыкли думать, что шифры и шпионские сообщения являются современным изобретением, невидимые чернила применяются для передачи секретной информации уже на протяжении сотен лет. Во время американской революции Джордж Вашингтон и его шпионы использовали невидимые чернила, изготовленные по специальному рецепту; такие чернила можно было увидеть только при контрастном окрашивании[3]. Написанные ими разведывательные данные, а также планы и, вполне возможно, карты, начерченные невидимыми чернилами, передавались незамеченными и изменили ход войны.
Представьте себе, что один из шпионов Вашингтона использовал такие чернила для зарисовки плана оккупированного Нью-Йорка, отметив места сосредоточения британских войск. Была ли такая невидимая карта настоящей картой? Конечно, да. И Джордж Вашингтон смог бы подтвердить это, обработав бумагу контрастной краской, чтобы чернила стали видимыми. Информация на карте при нанесении красителя не изменилась. Карта отражала план города Нью-Йорка до и после того, как стала видимой невооруженным глазом.
Эта сказка о невидимых чернилах Вашингтона вызывает интересный вопрос: нельзя ли нанести на карту V1 контрастную краску и сделать ее видимой? В 1988 году группа специалистов, занимающихся зрением, проделала именно это и продемонстрировала карту области V1 макаки[4]. Как человек и другие приматы, макаки в значительной степени ориентируются с помощью зрения и имеют карты V1, аналогичные нашим картам.
В этом эксперименте обезьяны смотрели на изображение, вспыхивающее на мониторе компьютера, а им в кровь в это время вводили похожее на сахар вещество, но только с радиоактивной меткой. Наиболее активные нейроны в области V1 захватывали радиоактивное вещество (по той причине, что активно возбуждающиеся нейроны требуют больше энергии). Далее обезьян усыпляли, так что у них переставало биться сердце, и после этого ученые вводили в ткани мозга консерванты, вынимали мозг из черепа и отделяли зрительную кору от остальных частей мозга. Они разравнивали V1, так что она превращалась в плоский лист, замораживали ее и делали срезы с помощью замороженного лезвия. Затем они клали на замороженные срезы рентгеновскую пленку и оставляли на срок от двух недель до трех месяцев, до проявления. Ученые обнаружили удивительные изображения того, что видели обезьяны за несколько недель или месяцев до смерти. Один пример показан на рис. 3: слева изображено то, на что смотрела обезьяна, а справа – картина активности на карте V1, которую удалось визуализировать на срезе мозга животного.
Рис. 3. Соответствие между изображением в правой части поля зрения (слева) и отображением этой информации в виде активности левой половины зоны V1 зрительной карты мозга (фотография среза мозга справа). Источник: The Journal of Neuroscience, vol. 8, no. 5. Copyright © 1988 by the Society for Neuroscience.
Подобно тому, как генерал Вашингтон использовал контрастный краситель, чтобы сделать видимыми полученные им письма и планы, ученые смогли сделать видимой карту V1 путем обработки, развертывания, замораживания и проявки мозга. Иными словами, да, мы можем открыть мозг и увидеть карту в области V1, но это сложно. Новые технологии дали нам более простые способы визуализации карт мозга. Вообще говоря, для этого подходит любой метод, который может превратить возбуждение нейронов в свет в видимом диапазоне длин волн.
Даже беглый взгляд на эти изображения позволяет выявить очевидное несоответствие: картинка в мозге достаточно сильно отличается от изображения на экране. И это не ошибка. Активность нейронов в области V1 мозга обезьяны не является некачественным отображением того, что видела обезьяна перед смертью. Карта области V1 очень сильно искажена. Маркерные точки на рис. 4 показывают, как именно. Вертикальная прямая линия в левой части исходного рисунка в мозге растягивается в широкую С-образную полосу, тогда как ровный полукруг в правой части исходного рисунка уплощается и даже слегка инвертируется. Рисунок переворачивается, так что верхняя часть экрана оказывается в нижней части карты V1. Но это еще не все: что-то не так с отображением концентрических окружностей, так что самый маленький полукруг занимает слишком много места. Именно эти аномалии обнаружил Иноуэ более ста лет назад.
Рис. 4. Маркерные точки на видимом изображении (слева) и на соответствующей карте активности в зрительной области V1 в мозге обезьяны (справа) показывают, каким образом инвертировано и искривлено изображение на карте V1. Источник: Paul Kim, The Journal of Neuroscience, vol. 8, no. 5. (с модификациями). Copyright © 1988 by the Society for Neuroscience.
Благодаря работам Иноуэ и нескольких других ученых до и после него было обнаружено неизвестное ранее место, где происходит зрительное восприятие. Этот участок спрятан в складках задней части нашего мозга. Он содержит нейронную карту, которая отображает зрительную информацию при помощи электричества и времени. На рис. 5 показано, где спрятана область V1 и как выглядит на ней зрительное изображение. Именно эту карту продырявили пули у пациентов Иноуэ, оставив прорехи в поле зрения, хотя оба глаза у них функционировали нормально.
Существование такой карты в нашем мозге может показаться странным и неправдоподобным. Однако такие карты, как V1, являются не исключением, а правилом. Мозг больших и маленьких существ переполнен подобными картами. В последующих главах мы поговорим об их замечательном разнообразии и о том, как их особенности и искривления формируют наши мысли и опыт. Но сначала нужно ответить на важнейший вопрос: зачем мозгу столько карт? Ответ можно найти в устройстве электронных приборов и в эволюции, и связан он со столь разными темами, как голодный мозг и фантастическая способность примитивного пустынного муравья ориентироваться в пространстве. Вы увидите, что на самом деле невероятной является наша способность вообще что-либо видеть. Такие зрительные карты, как в области V1, являются решением проблемы, о существовании которой вы никогда даже не подозревали. Они уникальным образом обеспечивают нас зрением и другими чувствами в мире голода, дефицита и хищничества.
Рис. 5. Отображение зрительной информации в левой и правой частях зрительной карты V1 у человека. Художник Пол Ким.
1
Mishima S. The History of Ophthalmology in Japan. Belgium: J. P. Wayenborgh, 2004; Glickstein M., Whitteridge D. Tatsuji Inouye and the Mapping of the Visual Fields on the Human Cerebral Cortex. Trends in Neurosciences. 10 (1987): 350–53; Kauffmann Jokl D.H., Hiyama F. Tatsuji Inouye – Topographer of the Visual Cortex, Exemplar of the Germany-Japan Ophthalmic Legacy of the Meiji Era. Neuro-Ophthalmology. 31 (2007): 33–43; Gross C.G. Brain, Vision, Memory: Tales in the History of Neuroscience. Cambridge, MA: MIT Press, 1998; Tatsuji I. Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: Nach Beobachtungen an Verwundeten der letzten japanischen Kriege. Leipzig, Germany: W. Engelmann, 1909.
2
Henschen S. On the Visual Path and Centre. Brain. 16 (1893): 170–180.
3
Washington and his spies / Nagy J.A. George Washington’s Secret Spy War: The Making of America’s First Spymaster. New York: St. Martin’s Press, 2016.
4
Tootell R. et al. Functional Anatomy of Macaque Striate Cortex: II. Retinotopic Organization. Journal of Neuroscience. 8 (1988): 153–68.