Читать книгу Оценка качества нейронных сетей. Алгоритмы и практические примеры - - Страница 2

Оглавление

Добро пожаловать в мир алгоритмов оценки качества моделей на основе точности и полноты при использовании нейронных сетей! Эта книга предназначена для всех, кто интересуется машинным обучением, нейронными сетями и хочет научиться оценивать и интерпретировать результаты своих моделей.


Мир моделей машинного обучения постепенно завоевывает все большую популярность и проникает во все сферы нашей жизни, от медицины и финансов до личной ассистентки на смартфоне. И хотя процесс обучения модели может быть непростым и сложным, оценка качества модели является неотъемлемой частью этого процесса.


А как же оценить качество модели? Конечно, существуют различные метрики и алгоритмы, но в этой книге мы сосредоточимся на точности и полноте – двух основных показателях оценки моделей классификации. Нашей целью будет научить вас применять эти метрики к моделям, основанным на нейронных сетях, и помочь вам понять, как интерпретировать полученные результаты.


Представим вам краткий обзор алгоритмов оценки качества моделей и расскажем о важности точности и полноты в задачах классификации. Затем мы перейдем к подготовке данных – этапу, который предшествует обучению модели. Мы опишем методы загрузки данных, их предобработки и разделения на тренировочный и тестовый наборы.


Познакомим вас с процессом обучения нейронной сети. Мы рассмотрим основные этапы построения архитектуры сети, выбора функций потерь и оптимизаторов, настройки параметров модели и, конечно же, сам процесс обучения на тренировочных данных. Мы также рассмотрим методы оценки производительности модели на тренировочном наборе данных.


Перейдем к получению предсказаний с помощью обученной нейронной сети. Мы покажем, как использовать модель для осуществления предсказаний на тестовом наборе данных и преобразовать предсказанные значения в классы.


Рассмотрим вычисление точности, полноты и F1-меры – метрики, которые позволяют оценить качество модели на основе предсказаний. Мы покажем вам, как вычислять эти метрики и как интерпретировать полученные значения.


Подведем итоги, сделаем основные выводы и обсудим перспективы развития данной темы. Вы сможете применить полученные знания на реальных данных и проанализировать результаты, а также сравнить свои модели с другими алгоритмами и методами.


Мы надеемся, что эта книга станет вашим надежным проводником в мире оценки качества моделей на основе точности и полноты. Будем рады делиться с вами знаниями и помогать вам на каждом шаге этого увлекательного исследовательского пути.


С наилучшими пожеланиями,


ИВВ

Оценка качества нейронных сетей. Алгоритмы и практические примеры

Подняться наверх