Читать книгу No kā viss ir izgatavots? Stāsti par vielu - - Страница 1

1. nodaļa: No kā tas viss sastāv?

Оглавление

To ir miljoniem! No kā ir veidoti zēni un meitenes un viņu vecāki? No kā ir izgatavots viss, ko viņi nēsā kabatās, mugursomās un rokassomās, kā arī pašas mugursomas un rokassomas? Un tēta mašīna garāžā, tējkanna virtuvē, mammas kosmētika, vecmāmiņas glāzes, pannas un pogu kastīte? Un vēl – dīvāni un taburetes, rullīši un kurpes, mobilie telefoni un Pepsi pudeles? Starp citu, no kā ir izgatavota soda un viss, ko mēs dzeram un ēdam?


Nu, tas ir vienkārši, jūs varētu teikt. Krēsli ir no koka, panna ir no metāla, Pepsi pudele ir no plastmasas, bet pats Pepsi ir ķīmija, tā saka tētis! Tētim, protams, ir taisnība, bet tas nav tas, ko mēs domājam. Viss, kas mums apkārt, viss, ko radījusi daba un ko darinājušas cilvēka rokas, ir veidots no vielām. Lieta un viela ir tik līdzīgi un tik viegli atcerēties!


Vielu ir daudz, un katrai no tām ir savs nosaukums, bieži vien (nereti) pat vairāk nekā viens. Ņemsim, piemēram, sāli sāls sālsūdenē. Mamma to sauc vienkārši par «sāli», vecmāmiņa – par «galda sāli», bet ķīmiķi šo balto kristālisko vielu ar sāļu garšu dēvē par «nātrija hlorīdu». Tāpat ir ar cukuru. Tētis saka: «Pasniedziet man cukuru, lūdzu!», vectētiņš to sauc par smiltīm, vecmāmiņa rūc, ka no galda jānovāc šī «baltā nāve», un ķīmiķi šo balto kristālisko vielu ar saldu garšu sauks gandrīz tāpat kā tētis – saharoze, jo cukura īsto ķīmisko nosaukumu – alfa-D-glikopiranozil-beta-D-fruktofuranozīds – ir gandrīz neiespējami izrunāt un vēl neiespējamāk atcerēties. Nebaidieties, šādu nosaukumu grāmatā vairs nebūs.


Ķīmisko nosaukumu ir miljoniem, tāpat kā pašu vielu. Vielas ir cietas kā akmens, šķidras kā ūdens, gāzveida, caurspīdīgas un bezsvara kā gaiss, ko mēs elpojam. Tās var būt melnas kā ogles, sarkanas kā rūsas vai pat bezkrāsainas. Tās var izdalīt spēcīgu smaržu vai nejust nekādu smaržu, tās var apdedzināt ādu vai mīkstināt to. Dažas no tām šķīst ūdenī, bet citas to nepanes, dažas no tām mirgo un sprāgst no mazākās dzirksteles, bet citas nebaidās no uguns, dažas no tām vada elektrisko strāvu, bet citas, gluži pretēji, pasargā mūs no tās.…


Visām vielām ir sava dzīve. Tās var mierīgi līdzāspastāvēt, tāpat kā akmens, ūdens un gaiss strauta krastā. Vai kā daudzas vielas virtuvē. Ja ņemam cepamo sodu un uz tās uzpilinām saulespuķu eļļu, nekas nenotiek. Uzkapājiet citrona sulu uz galda sāls no sāls spainīša – atkal nekādas izmaiņas. Taču dažas vielas iesaistās cīņā, tās iedarbojas viena uz otru – mijiedarbojas. Un šī mijiedarbība var būt ļoti vardarbīga. Vai vēlaties pārliecināties pats? Uzlejiet uz šķīvja nedaudz cepamās sodas un izspiediet uz tā dažus pilienus citrona. Soda sāks sūkstīties un putot, jo tā mijiedarbosies ar citronskābi citrona sulā. Apsveicam, jums ir notikusi pirmā ķīmiskā reakcija!


Vai vēlaties vēl? Nav nekādu iebildumu! Man ir lieliska reakcija starp cieti un jodu. Veiksim to. Es esmu pārliecināts, ka jūsu mājas aptieciņā ir joda tinktūra. Iepiliniet dažus pilienus nelielā ūdens daudzumā, lai iegūtu dzeltenas krāsas šķīdumu. Tagad dodieties uz virtuvi un sameklējiet kartupeli. Kartupeļos ir daudz cietes. Baltās pēdas uz naža, kas paliek pēc tam, kad mamma ir sagriezusi bumbuli šķēlītēs, ir ciete. Taču ar to pietiek, lai mēs kartupeli pārgrieztu uz pusēm. Tagad pilienu vai divus dzeltenā šķīduma, ko tikko sagatavojāt, uzpiliniet uz šī griezuma un paskatieties, kas notiks. Ļoti ātri vieta, kur piliens būs piliens, kļūs zila. Tā ir trešā viela, cietes savienošanās ar jodu rezultāts. Un tagad, izmantojot šo reakciju, jūs varat veikt veselu pētījumu virtuvē un pārliecināties, ka ciete ir makaronos, maizē, rīsos un pat jogurtā.


Tātad katrai vielai ir savs raksturs un izskats, īpašības un temperaments. No tām sastāv viss mums apkārt, arī jūs un es.

Mazāks par mazu

Mazāks par mazu Labi, jūs varētu teikt, bet no kā sastāv pati matērija? Ķīmiķi simtiem gadu ir meklējuši atbildi uz šo jautājumu. Un viņi ir nonākuši pie secinājuma, ka vielas sastāv no molekulām – tās mazākajām daļiņām, kas saglabā vielas īpašības, tāpat kā tauta sastāv no indivīdiem un ķieģeļu žogs no ķieģeļiem.


Holandiešu ārsts un matemātiķis Īzaks Bekmans 1602 gada. gada 14. septembrī savā dienasgrāmatā ierakstīja, ka, sadalot zāļu devu uz pusēm, abas pusdevas saglabāja ārstnieciskās īpašības. Nākamā dalīšana deva tādu pašu rezultātu. Un tad Bekmans nodomāja: ja devu atkal un atkal dalīs divās daļās, droši vien pienāks brīdis, kad mazā daļiņa zaudēs savas īpašības. Šo sīko daļiņu, kas saglabāja vielas ārstnieciskās īpašības, Bekmans nosauca par minimumu. Šis minimums nozīmēja to pašu, ko pašreizējais termins «molekula».


Un drīz vien, 1636. gadā, parādījās pats vārds «molekula». Franču priesteris Pjērs Gasendi, kas bija slavens ar saviem darbiem astronomijas, matemātikas, mehānikas un filozofijas jomā, vārdam «mole» pievienoja daļiņu-cula, kas tolaik nozīmēja to, ko tagad apzīmē ar vārdu «masa». Rezultāts bija ļoti, ļoti, ļoti, ļoti, ļoti, ļoti maza masa.


Pagāja ilgs laiks, kamēr ķīmiķi pie šīs idejas pierada, molekulu teorija progresēja ar čīkstēšanu, bet ar katru gadu tā ieguva arvien vairāk atbalstītāju. Tā pamazām ķīmiķi paši nepamanīja, kā viņi sāka izmantot šo koncepciju, lai izskaidrotu vielu īpašības. Bet tikai 1860. gadā Vācijas pilsētā Karlsrūē pulcējās Pirmais starptautiskais ķīmiķu kongress, kurā zinātnieki leģitimēja «molekulu» kā terminu.


Tās ir tik mazas, ka parastai acij tās ir neredzamas. Mēs redzam tikai vielas graudiņu vai pilienu, kas patiesībā sastāv no ļoti daudzām molekulām, kas cieši pieguļ viena pie otras. Un nav viegli izlauzties no šī apskāviena. Piemēram, to pašu cukuru nevar sasmalcināt molekulās, sasmalcinot to miezerī. Bet tā kristālus var iemest ūdenī. Pēc mirkļa tie izšķīdīs un pazudīs, kļūs neredzami. Tas nozīmē, ka ūdenī cukura kristāli ir sadalījušies atsevišķās molekulās, kas brīvi peld kā zivs ūdenī. Un šeit ir vēl viens vienkāršs eksperiments. Ielej šķīvītī nedaudz ūdens, novieto to saulē un vēro. Vienīgais, ko jūs redzēsiet, būs tas, ka ūdens lēnām pazudīs no šķīvīša, iztvaikos. Taču šis iztvaikošanas process nav acīm redzams, jo atsevišķas ūdens molekulas izkļūst gaisā, ko acs nevar saskatīt.


Un tomēr, cik lielas tās ir? Paņemsim parastā ūdens molekulu un palielināsim to miljonu reižu. Ko mēs iegūstam? Nē, nevis ziloni, bet mazu punktiņu uz papīra lapas. Starp citu, ja mēs miljonu reižu palielināsim Ostankinas televīzijas torni, teorētiski būs iespējams uzkāpt līdz Mēnesim un vēl tālāk. Lūk, cik mazas ir molekulas.


Tad cik daudz molekulu var ietilpt vienā cukura graudiņā? Jūs neticēsiet, divi miljardi miljardi miljardu. Tas ir tik milzīgs skaitlis, ka to pat grūti iedomāties vai ar kaut ko salīdzināt. Galu galā, ja jūs ar kājām dosieties uz zvaigžņu sistēmu Alfa Centauri, kur uzņemta filma «Avatars» un kur vairāk nekā četrus gadus lido pasaulē ātrākais vēstnesis – gaisma, soļu skaits, ko jūs spertu, joprojām būs 25 reizes mazāks nekā molekulu skaits cukura graudiņā.


Pasaulē ir visdažādākās molekulas! Mazas un lielas, plakanas un apjomīgas, garas un īsas, ažūras, spirālveida un sfēriskas. Un ir molekulas, kuru forma ir ļoti līdzīga lietām, pie kurām esam pieraduši – futbola bumba un puķupods, karaļa kronis un Ēģiptes piramīdas, sviestmaize un zobrats, saulespuķe un pat suns.


Ķīmiskie dziedājumi

Jūsu vietā es sāktu zaudēt pacietību un nekavējoties jautātu: «No kā sastāv molekulas?» Molekulas sastāv no vēl mazākām sastāvdaļām – atomiem. Pirms divsimt piecdesmit gadiem Mihails Vasiļjevičs Lomonosovs rakstīja, ka visas vielas sastāv no «ķermenīšiem» (molekulām), kas savukārt ir «elementu kopumi» (atomi). Savukārt 19. gadsimta sākumā anglis Džons Daltons izdomāja, ka vielu veido atomi ar dažādu masu un atomi savienojas, veidojot molekulas – tas bija pirmais pareizais vielas apraksts.


Par laimi, uz Zemes nav daudz elementu jeb atomu paveidu – līdz šim to ir tikai 114. Iespējams, ka pētnieki ar laiku atradīs arī citus elementus. Katram ir savs nosaukums, sava masa, savs raksturs, gluži kā cilvēkam, un visi šie nosaukumi kopā ar to īpašībām ir ierakstīti vienā tabulā, ko pirms vairāk nekā simt četrdesmit gadiem sastādīja izcilais krievu ķīmiķis Dmitrijs Ivanovičs Mendeļejevs. Ķīmiķiem tā ir sava veida svētā grāmata, kurā ierakstīti visi cilvēku vārdi. Starp citu, daudzus no šiem ķīmiskajiem nosaukumiem jūs labi zināt: zelts, skābeklis, dzelzs, alumīnijs… Vai ne?


Savas ērtības labad ķīmiķi katram elementam ir izdomājuši arī īsus apzīmējumus, kas sastāv no viena vai diviem burtiem. Līdzīgi kā ar cilvēka iniciāļiem: tā vietā, lai rakstītu «Aleksandrs», mēs vienkārši rakstām «A». Tā nu sanāk, ka šie īsie apzīmējumi ir atvasināti no elementu nosaukumiem latīņu valodā, taču tas nevienam nerada neērtības. Man šķiet, ka jūs nepārsteigs arī angļu burti. Tātad daudzi elementi tiek apzīmēti ar vienu burtu, ūdeņradis ar H, skābeklis ar O, slāpeklis ar N, ogleklis ar C, bet fluors ar F. Citus apzīmē ar diviem burtiem, daļēji tāpēc, lai izvairītos no pārpratumiem, kad pirmais burts jau ir lietots: hēlijs – He, neons – Ne, dzelzs – Fe.


Bet atgriežoties pie pašiem atomiem. Iedomājieties, ka jums ir 114 dažādu krāsu, izmēru un formu pērlītes jebkurā daudzumā. Kā jūs domājat, cik daudz auskaru un citu rotaslietu jūs varat izgatavot no šīs pērlīšu bagātības, kombinējot tās dažādos veidos? Cik vien vēlaties, bezgalīgi daudz! Bet, protams, jūs izgatavosiet tikai tās rotaslietas, kas jums patīk un, jūsuprāt, izskatās glīti. Šādu kombināciju būs daudz mazāk, bet tomēr ļoti daudz.


Tāpat ir arī dabā. Elementi, precīzāk, elementu atomi, kombinējoties savā starpā dažādās proporcijās, veido visu gigantisko vielu daudzveidību uz Zemes. Atomi molekulā ir cieši saistīti savā starpā, veidojot saites, ko ķīmiķi sauc par ķīmiskajām saitēm, tāpēc lielākā daļa molekulu jūtas diezgan stabili un nesadalās. Cita lieta, ka daži atomi nevar savienoties ar citiem vai var aptvert tikai ierobežotu skaitu Mendeļejeva tabulas biedru. Šeit daba pavēl, kas viņai patīk un kas nepatīk. Viņai ir savs priekšstats par skaistiem un noderīgiem auskariņiem. Un ķīmiķi uzskata, ka šīs vēlmes ir likums.


Viena elementa atomi var savienoties viens ar otru. Un tad mēs iegūstam vielas, kuras sauc ar elementa nosaukumu, piemēram, zeltu. Šādas vielas ķīmiķi sauc par vienkāršām vielām. Taču, ja vienā molekulā satiekas dažādu elementu atomi, tad mēs iegūstam sarežģītāku vielu, ko sauc par savienojumu. Visa neskaitāmo vielu bagātība un daudzveidība mums apkārt ir tikai dažādu atomu, dažādu elementu kombinācijas. Ja divi skābekļa atomi savienojas kopā, mēs iegūstam skābekli – neredzamo gāzi, kas ir daļa no gaisa, ko elpojam, un kuras mums dažkārt tik ļoti pietrūkst aizdūmotajā pilsētā. Ja trīs atomi – ozons, arī – neredzama gāze, kas veidojas atmosfērā negaisa laikā. Ja skābekļa atoms savienojas ar diviem ūdeņraža atomiem, tad veidojas visbrīnišķīgākā viela uz Zemes – ūdens, ko mēs dzeram. Vai arī ir slavenais nātrija atoma un hlora atoma savienojums. Tie savienojas, veidojot baltu kristālisku vielu, ko mēs liekam sāls spainītī.


Jā, es zinu, ka jums uz mēles ir sarežģīts jautājums – no kā sastāv atomi? Baidos, ka ceļojums matērijas dzīlēs šķiet gandrīz bezgalīgs. Iespējams, tas tā arī ir. Taču šodien par atomiem jau daudz kas ir zināms. Fiziķi apgalvo, ka atomiem ir arī struktūra. Katram mazajam atomam ir vēl mazākas daļas: kodols, kas sastāv no protoniem un neitroniem (fiziķi tos sauc par elementārdaļiņām), ap kuriem kā planētas ap sauli rotē citas elementārdaļiņas – elektroni.


Pateicoties šai atomu iekšējai struktūrai, elementi atšķiras viens no otra. Šīs pašas atšķirības ļāva ķīmiķiem sakārtot elementus Mendeļejeva tabulā stingrā secībā. Tie nav sakārtoti alfabēta secībā vai pēc atklāšanas datuma. Elementi ir sakārtoti saskaņā ar to numuriem. Elementa numurs ir atkarīgs no tā atoma struktūras. Piemēram, ūdeņradis ir numur 1. Tas nozīmē, ka tā atomā ap kodolu rotē tikai viens elektrons. Hēlijam ir divi elektroni zem 2. numura, bet skābeklim ir sešpadsmit elektronu zem 16. numura. Elektronu skaits elementa atomā ir ļoti svarīgs skaitlis, un no tā ir atkarīgas elementa īpašības, raksturs un uzvedība. Tāpēc kompetents ķīmiķis, aplūkojot Mendeļejeva tabulu, var precīzi pateikt, kuru elementu atomi var veidot ķīmisko saiti, kuri atomi, savienojoties, veido metāla lietņu, bet kuri – gāzi.


Izrādās, ka visa Visumā esošā matērija, tostarp Zeme un viss, kas uz tās atrodas, sastāv tikai no trīs veidu elementārdaļiņām – neitroniem, protoniem un elektroniem. Vai tas nav pārsteidzoši?


Nē, nē, nejautājiet man, no kā sastāv protoni, neitroni un elektroni! Tas ir labs jautājums, par to nav šaubu. Un fiziķi šajā reizē sāks stāstīt par kvarkiem, no kuriem sastāv protoni un neitroni, par to «aromātu», «krāsu» un citām īpašībām, par to, ka kvarki savā tur… Šeit mēs apstāsimies, jo īpaši tāpēc, ka matērijas dzīlēs vēl ir daudz neskaidrību. Mūsu brīnišķīgā pasaule nav līdz galam iepazīta, un atbildi uz daudziem neatrisinātiem jautājumiem, pilnīgi iespējams, jūs atradīsiet, kad kļūsiet pieauguši un veltīsiet sevi zinātnei.


Neredzamais atstāj pēdas

Es jūtu, kā mani pārņem šaubas. Ja šīs molekulas, atomi un elementārdaļiņas ir tik mazas, ka tās nav saskatāmas, kāpēc mēs tik pārliecinoši apgalvojam, ka tās eksistē? Vai var būt tā, ka tās vispār nepastāv?


Patiešām, atoma izmērs ir niecīgs. Un vēl nesen nebija mikroskopa, ar kuru tos varētu saskatīt. Taču tas nenozīmē, ka nevar būt pārliecināts, ka atomi un elementārdaļiņas pastāv.


Iedomājieties, ka jūsu mājā ir pele. Jūs to neredzat, bet droši zināt, ka tā tur ir: uz galda atstāts siera gabaliņš naktī pazūd, mājā ir peļu pēdas, un naktī jūs dzirdat šņākšanu. Tātad pele ir, lai gan tā nav redzama. Šo secinājumu mēs izdarījām, kā saka zinātnieki, pamatojoties uz netiešiem novērojumiem. Vai arī pa debesīm lido lidmašīna. Augsti un augstu, jūs to nemaz neredzat, un jūs nedzirdat tās dzinēju troksni. Taču jūs skaidri redzat balto pēdu, ko tā atstāj debesīs. Zinātnieki to sauc par inversijas pēdām.


Nu, tā ir lieliska ideja, lai uzzinātu par daļiņu pastāvēšanu no to pēdām. Šādu pieeju izmantoja skotu fiziķis Čārlzs Vilsons, 20. gadsimta sākumā izveidojot ievērojamo Vilsona kameru. Caurspīdīgajā kamerā ir pārsātināti ūdens tvaiki. Pietiek tikai mazākā iejaukšanās šajos tvaikos, lai gaisā peldošās ūdens molekulas sāktu salipt kopā, veidojot acīm redzamus ūdens pilienus. Šo procesu sauc par kondensāciju, un to bieži var redzēt, kad automašīnas logi ir aizsvīduši vai kad no rīta pēc aukstas nakts uz zāles un ziediem krīt rasa. Starp citu, tieši šādi debesīs veidojas lidmašīnas pēdas. Ūdens tvaiku kondensāciju izraisa no dzinēja izlidojošās nepilnīgi sadegušās degvielas daļiņas. Tāpēc inversijas pēdu bieži sauc par kondensācijas pēdu.


Elementārā daļiņa, elektrons vai protons, ko fiziķi pirms tam stipri paātrina īpašos daļiņu paātrinātājos – ciklotronos, ielido šādā kamerā. Acumirklī daļiņa izlido cauri kamerai un atstāj aiz sevis kondensācijas pēdu, kas sastāv no ūdens pilieniem. Šī pēda, ko fiziķi dēvē par pēdu, nepazūd uzreiz, tāpēc pētniekiem ir laiks to nofotografēt. Attēli ir pārsteidzoši skaisti. Fiziķi ne tikai skatās uz tām, bet lasa tās kā grāmatu par elementārdaļiņu dzīvi un notikumiem, kas notiek, tām saduroties Vilsona kamerā.


Izmantojot netiešās metodes, var pierādīt arī neredzamo molekulu pastāvēšanu. Skotijas botāniķis Roberts Broughtons gandrīz pirms 200 gadiem pamanīja ko neparastu. Ja sīkas ziedu putekšņu daļiņas ievieto ūdenī un novēro caur mikroskopu, redzams, ka putekšņu daļiņas nestāv uz vietas, bet visu laiku veic nejaušus lēcienus. Šo nepārtraukto daļiņu juceklīgo klaiņošanu šķidruma tilpumā par godu atklājējam nodēvēja par Brauna kustību.


Taču šīs daļiņas ir nedzīvas, tās nevar kustēties pašas no sevis, tāpēc kāds tās spiež no dažādām pusēm un ļoti spēcīgi. Kas tas varētu būt? Gandrīz 80 gadus vēlāk, 1905. gadā, viens no 20. gadsimta ievērojamākajiem zinātniekiem Alberts Einšteins izteica pieņēmumu, ka daļiņas stumj šķidruma molekulas, kas savukārt arī atrodas nepārtrauktā kustībā. To ir daudz, tās nāk uz daļiņu no dažādām pusēm, un, ja pēkšņi kādā brīdī molekulas vienā pusē «aizķeras», bet otrā sāpīgāk, daļiņa izkustēsies no vietas un aizlidos kādu attālumu.


Alberts Einšteins to visu izklāstīja savā slavenajā zinātniskajā darbā par Browna kustību. Viņš pat teorētiski pamatoja un paredzēja, cik daudz putekļu daļiņām šķidrumos vajadzētu kustēties, ja tās spiež molekulas.


Tomēr tas viss bija tikai pieņēmums, teorija, un Einšteins pats šaubījās, vai kāds spēs to pārbaudīt eksperimentāli. Taču tāds bija. Franču fiziķim Žanam Baptistam Perēnam 1908. un 1913. gadā izdevās veikt vislabāko eksperimentu: viņš izsekoja tūkstošiem daļiņu ceļu šķidrumā un izmērīja to pārvietojumu. Rezultāti pilnībā atbilda Einšteina prognozēm, molekulārā teorija triumfēja, un pats Žans Baptists Perēns 1926. gadā saņēma augstāko zinātnes apbalvojumu – Nobela prēmiju fizikā.


Cita, bet daudz progresīvāka metode, kas ļauj redzēt molekulu, parādījās pagājušā gadsimta 30. gados. Tas bija elektronu mikroskops. Tā radītāji, vācu fiziķi Makss Knolls un Ernsts Ruska 1931. gadā nejauši pamanīja, ka, ja elektronu plūsma izplūst cauri visplānākajam vielas slānim un nokrīt uz jutīga ekrāna, tad uz šī ekrāna var redzēt to veidojošo molekulu ēnas. Lūk, vēl viens pierādījums molekulu pastāvēšanai. Jūs varat apskatīt pirmo krievu elektronu mikroskopu, ja neesat slinki un aizbraucat uz Politehnisko muzeju Maskavā, kur tas ir publiski izstādīts.


Mūsdienās zinātnes un tehnikas progress ir sasniedzis tik neticamas virsotnes. ka ir ierīces, kas ļauj saskatīt atomus! Tie ir skenējošās zondes mikroskopi, kuru pirmo modeli 1981. gadā izgudroja Gerds Binnigs un Heinrihs Roreers. Un 1986. gadā viņiem tika piešķirta Nobela prēmija fizikā par šo izgudrojumu, kas ļauj pētniekiem ielūkoties pašos matērijas dziļumos. Viņiem pievienojās arī Ernsts Ruska. Viņam uz šo balvu bija jāgaida 55 gadus, taču taisnīgums uzvarēja.


Šajā jaunās paaudzes mikroskopā visplānākā adata, uzasināta no viena atoma, it kā taustot vielas vai materiāla virsmu un pārraidot tās attēlu uz ekrāna. Tādējādi pirmo reizi uz zelta plāksnītes bija iespējams saskatīt zelta atomus, kas, kā uzskatīja ķīmiķi, izvietoti blīvās rindās, lodīte pie lodītes. Un arī bija iespējams aplūkot vissvarīgāko dzīvības molekulu – DNS molekulu, uz kuras ir ierakstīta visa mantojuma informācija un kura kontrolē visus mūsu organismā notiekošos procesus. Tā zinātnieki savām acīm pārliecinājās, ka DNS molekula izskatās kā gara ķēde vai drīzāk – kā spirāle.


Es domāju, ka ir pienācis laiks apstāties. Galu galā galveno jau esam uzzinājuši. Viss ap mums, arī mēs paši, sastāv no vielām, vielas sastāv no atomiem, atomi sastāv no elementārdaļiņām. Bet no kurienes radās visas šīs elementārdaļiņas, no kurām veidojas atomi, no kurām veidojas vielas, no kurām veidojas viss, arī mēs paši?

No kā viss ir izgatavots? Stāsti par vielu

Подняться наверх