Читать книгу Информатика и ИТ. Нейросети. - - Страница 8

Глава 3
Представление информации в компьютере
Компьютерное представление графической информации

Оглавление

На сегодняшний день компьютерную графику по способу формирования и хранения изображений в памяти компьютера принято подразделять на растровую и векторную.

Растровое изображение формируется цветовыми точками. Растровые графические данные, в зависимости от способа сжатия, выбора глубины цветовой палитры, возможности хранения слоев и прочих возможностей при кодировании подразделяются по форматам стандартных способов записи файлов.

Векторное изображение формируется из набора объектов, описываемых с помощью математических формул.

Векторную графику, в свою очередь, по методу отображения можно разделить на большие категории:

– 2D-графику (плоскостную);

– 3D-графику (объемную);

– фрактальную графику (создание регулярных структур).

Изображения векторной графики также имеют собственные стандарты форматов хранения файлов.

По назначению компьютерную графику можно разделить на:

– Конструкторскую (инженерную) графику;

– Полиграфическую;

– Web-графику и т. д.

В таком делении учитываются требования области применения: для конструкторских работ важна точность отображения, но не слишком велики требования к цветовым характеристикам; для полиграфии – наоборот, точная цветопередача является основным требованием; в Web-графике существуют ограничения по объему файлов, к тому же, во всемирной паутине весьма ограничены цветовые палитры.

Цветовые модели. Разрешение

Для каждой точки растрового изображения (или для каждого объекта векторного изображения) должна сохраняться цветовая характеристика.

Если изображение монохромное (черно-белое) то хранить нужно только один признак цвета – есть цвет или нет, т.е. достаточно одного бита на каждый пиксель (объект) изображения.

Для описания градации одного цвета применяется обычное кодирование, в котором номер обозначает градацию. Чем больше значение, тем сильнее проявляется цвет. Таким образом, появляется возможность задавать оттенок цвета. Чтобы получить реальные полутона (для монохромного изображения), для хранения каждой цветовой точки нужно отводить большее количество разрядов. В этом случае черный цвет будет представлен нулевым значением, а белый – максимально возможным числом. Например, при восьмибитном кодировании получится 256 разных значений яркости (оттенки серого, Grayscale).

В более сложных случаях, когда речь идет о кодировании сложного цвета с большим количеством оттенков, рассматривают разложение цвета на несколько отдельных компонентов, которые, смешиваясь (т.е. действуя в одной точке), образуют заданный цвет.

Для цветных изображений нужно закодировать яркость и оттенок точки. Для получения наивысшей точности цветопередачи необходимо иметь по 256 значений для каждого из основных цветов (вместе это дает 23*8 – более 16 миллионов оттенков).


Рис. 3.3 Пространство цветов в модели RGB


Цветовое пространство характеризуют количеством битов, отводимых на сохранение цвета. Чаще всего используются режимы TrueColor (24 бита, в соотношении 8:8:8) и HighColor (16 бит, в соотношении 5:6:5).

Компоненты цвета и способ образования из них видимого оттенка образуют цветовую модель.

Теория цвета построена на особенностях зрения человека. Считается, что в глазу имеются сенсоры «колбочки», воспринимающие красный, зеленый и синий цвета, их отнесли к базовым (Red – красный; Green – зеленый; Blue – голубой). Остальные цвета получаются как смешение долей цвет. Белый – смешение максимального значения цветовых каналов, черный – отсутствие свечения по всем каналам. Эта модель цветового пространства названа аддитивной (суммирующей) и именуется RGB. Мониторы работают именно в этой системе, т.к. физически монитор излучает именно эти цвета.

Распространена и другая – субтрактивная (разделяющая) модель цветового пространства, получаемая вычитанием из белого базовых цветов. В итоге получены голубой, пурпурный и желтый цвета. Cyan – голубой; Magenta – фиолетовый; Yellow – желтый. При смешивании в равных максимальных долях они должны давать черный цвет. Поскольку на практике точного черного цвета при смешивании не получается, то в модель добавляется компенсирующий четвертый компонент – blacK, поэтому модель носит название CMYK. В этом пространстве работает большинство печатающих устройств.

Говоря о любом виде компьютерной графики нельзя не упомянуть о разрешении – понятии, которое применяется в очень разных смыслах:

Разрешение экрана – свойство видеоподсистемы, и настроек ОС, определяет размер изображения на экране; единицы измерения – PICSEL.

Разрешение электронного изображения – свойство файла, задается при создании (при сканировании, фотографировании и т.д.), определяет размер самого изображения; единицы изменения PPI – PICSEL PER INCH.

Разрешение печатного изображения – свойство принтера, количество точек, которые могут быть напечатаны на участке заданной длины, определяет качество изображения при заданном размере; единицы измерения DPI – DOTS PER INCH.

Чем больше разрешение – тем выше качество изображения, но и больше места требует сохраняемый графический файл. Для экранного отображения достаточно разрешения 70—75 ppi, для качественной распечатки на струйном/лазерном принтере потребуется 150—200 dpi, полиграфическим считается разрешение более 250 dpi.

Растровая графика

Растровые изображения формируются цветовыми точками, называемыми пикселями (PICSEL – PICtureS ELement). Из них создается двумерный массив (матрица).

Растровая графика – основное средство представления и обработки фотографических изображений, стилизованных художественных рисунков, с помощью именно этого способа представления информации строятся современные человеко-машинные интерфейсы. Но, несмотря на универсальность, этот способ представления информации имеет целый ряд недостатков. К ним относятся: зависимость качества изображения от его объема, трудность выделения и манипуляции отдельными элементами, существенное снижение качества изображения в результате геометрических преобразований (масштабирования, поворотов).

Устройствами, создающими растровое изображение, помимо собственно компьютера с растровым графическим редактором, являются:

– сканер;

– цифровая фото- и видео- аппаратура;

– программы – захватчики кадров теле- и видео- программ;

– программы создания растровой графики.

Сканеры и цифровая аппаратура используют светочувствительные элементы, при попадании на которые световой или лазерный луч передает характеристики точек. Эти характеристики в цифровом формате сохраняются на элементах памяти и, тем самым, достигается возможность передать изображение в компьютерную обработку.

Из-за разнообразия типов изображений и областей из использования существует огромное количество разнообразных графических форматов. Для того, чтобы программы понимали файлы разных форматов, существуют конвертеры – программы, переводящие файлы из формата в формат. Существует несколько наиболее употребительных форматов:

– .bmp – для хранения и передачи изображений в среде Windows;

– .jpg – для хранения изображений с применением сжатия (удаления избыточной информации);

– .gif – для хранения сжатых изображений с фиксированным количеством цветов, разрабатывался для применения в Интернете;

– .tif – предназначен для хранения изображений высокого (полиграфического) качества, имеется возможность перенесения на другие аппаратные платформы и т.д..

Векторная графика

Векторные изображения формируется из набора математически представленных геометрических объектов.

Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов. Наиболее распространенными примитивами являются: отрезки, прямоугольники и их производные (со сглаженными углами), эллипсы и их части, кривые Безье (математические кривые третьего порядка, задаваемые 4 точками), а также составленные из них сложные контуры.

Линии – это кривые разных порядков, при этом прямая рассматривается как частный случай кривой; они обладают свойствами – толщиной, цветом, начертанием (сплошная, штриховая). Из минимальных объектов-линий создаются контуры. Каждый контур имеет 2 или более опорные точки-узлы. Если 1-ая точка совпадает с последней – конур замкнут, и приобретает свойство заполнения (цветом, рисунком-текстурой, градиентной заливкой).

Большим преимуществом векторного представления графики является значительно меньший объем файлов по сравнению с растровой – изображение описывается не битовой картой, а несколькими формулами, при этом объем файла не зависит от размеров изображения. Еще одно достоинство векторного представления – его объектность: объекты легко выделять, при всех трансформациях (уменьшение, увеличение, искажение) качество не ухудшается и не зависит от разрешения.

Недостатком этой формы представления относится большая сложность создания фотореалистичных изображений и высокие требования к ресурсам вычислительной системы, необходимым для пересчета координат объектов при трансформации.

Устройством ввода векторного изображения является дигитайзер (сколка). Механическое воздействие на панель этого устройства позволяет фиксировать координаты точек, а сила нажатия – определять толщину линии между точками.

Распространенными форматами хранения векторных изображений являются:

– .wmf – формат хранения векторных изображений в Windows;

– .ai,.cdf – собственные форматы векторных редакторов AdobeIllustrator и CorelDraw, совместимые друг с другом.

– .dwg – формат файлов конструкторского программного пакета AutoCad.

Информатика и ИТ. Нейросети.

Подняться наверх