Читать книгу Наши развилки. Развилки эволюции природы на пути к человечеству - - Страница 10
2. ГЕОЛОГИЧЕСКИЙ ЭТАП ЭВОЛЮЦИИ ПРИРОДЫ К ЖИЗНИ
2.1. Земная развилка направила эволюцию Солнечной системы к человечеству. 4,567 миллиардов лет назад
2.1.1. Состав и структура Земли
ОглавлениеЗемля является сложной системой, эволюция которой направлена, как бы специально, на образование живых существ и их развитие до человечества. Для того чтобы понять – почему это удивительное явление природы связано с этой планетой, рассмотрим основные её характеристики. Приблизительно 4,56 млрд. л.н. завершилась первая стадия формирования земного шара. Осуществилась аккреция (слипание) около 99 % нынешней массы Земли. К этому времени наша планета практически полностью очистила свою орбиту от вещества, находившегося в газово-пылевом диске вокруг Солнца. На долю Земли и других планет осталось та, относительно малая часть холодного твердого и газообразного вещества, которая не была использована в процессе образования крупнейших объектов Солнечной системы: Солнца и Юпитера. После этих первых объектов Солнечной системы почти одновременно с Землей на разных орбитах нашей системы образовались другие планеты. Гравитационное поле придало Земле форму шара немного приплюснутого в полюсах – геоида. Сферическая форма присуща всем достаточно крупным космическим объектам: планетам, спутникам, звездам, галактикам, да и самой Вселенной. Средний диаметр планеты составляет 12742 км. Средняя плотность вещества планеты оценивается значением около 5,517 г/м3.
Первично все минеральные вещества и отдельные элементы находились в Земле в перемешанном состоянии. Немалую долю составляли углистые хондриты, которые являлись основным источником воды на Земле. Основной объем вещества был представлен соединениями кремния и железа. В более-менее однородной смеси разнообразных минералов довольно значительную долю составлял гидросиликат магния (Mg2SiO5H2), который содержал более 11 % воды по весу. Этот твердый минерал является одним из эффективных вместилищ воды, молекулы которой занимают второе место по распространенности во Вселенной после водорода. Гидросиликат магния остается стабильным в условиях земного ядра, то есть при давлении более 2 миллионов атмосфер и при температурах около 5000°C. На протяжении 30 млн. лет значительная часть воды в форме гидросиликатов сохранялась в ядерной части планеты. По мере погружения тяжелых железа и никеля к центру планеты и образования ядра происходило вытеснение силикатов выше – в слой, который постепенно превратился в мантию. В условиях меньшего давления гидросиликат магния стал нестабильным и разложился на оксид магния, силикат магния и воду. Вода в виде перегретого пара стала пробиваться к земной поверхности. Другие составляющие этого гидросиликата заложили основу мантии. Сейчас преобладающая масса этого водогенерирующего минерала уже израсходована.
Вода в результате гравитационного сжатия и химического преобразования протопланетного вещества начала проникать на поверхность планеты. Процесс перераспределения по плотности и гравитационного уплотнения первично холодного вещества сопровождался выделением огромного количества тепла, что привело к разогреву и расплавлению всей планеты, кроме внутреннего ядра. Состояние веществ в центре Земли, скорее всего, не соответствует нашим представлениям о расплавах и твердых веществах. Радиоактивный распад тяжелых элементов также послужил мощным источником внутреннего тепла. Радиогенное тепло в начальный период истории Земли значительно превышало современное, поскольку производилось большим количеством радиоактивных короткоживущих изотопов, которые к настоящему времени уже распались. Вносили свой вклад в тепловой баланс, как и сейчас, долгоживущие изотопы урана, тория, калия и некоторые другие.
Около 4,54 млрд. л.н. температура на поверхности Земли достигала 4000°C. Планета представляла собой расплавленный шар кипящего, газонасыщенного вещества. Спустя приблизительно тридцать миллионов лет, т. е. 4,51 млрд. л.н. планета остыла до 1500°C, что создало условия для обособления газовой оболочки в относительно стабильную атмосферу. Первичная газовая оболочка – Ранняя гелиево-водородная горячая атмосфера существовала на протяжении 30 млн. лет (4,51-4,48 млрд. л.н.), состояла из газов протопланетного облака – преимущественно из водорода (~95 %), гелия (~5 %), метана (от 0,83 до 0,75 %). Отсутствие магнитного поля у ранней Земли позволяло солнечному ветру (потоку частиц от Солнца) уносить в космос легкий водород и гелий. На смену этим компонентам первичной атмосферы поступали пары воды и другие газы из дегазируемой мантии и из испаряющихся космических веществ, падавших на Землю. Прежде всего, за счет активной вулканической деятельности поступили из недр огромные объемы водяного пара и других газов. Эти летучие соединения выделились из первичного вещества планеты, в котором они находились в связанном состоянии: вода в основном в гидросиликатах, углекислый газ в карбонатах, азот в нитридах и нитратах и т. д. Поверхность планеты продолжала охлаждаться до 700°C. В результате 4,48 млрд. л.н. произошла смена воздушной геосферы – сформировалась вторая – Палеокатархейская углекисло-водяная атмосфера. Вторая атмосфере состояла сначала из одного водяного пара, а затем с добавлением нарастающей доли углекислого газа (до 44 %), и немного других веществ: водорода (7 %), азота (6 %), аммония (3 %), гелия (2,4 %), метана (0,8 %), аммиака, сероводорода, хлористого водорода и некоторых других газообразных веществ. Вторая атмосфера просуществовала также около 30 млн. лет (до 4,45 млрд. л.н.). Этот этап тепловой истории Земли можно назвать «Расплавленная Земля», к концу, которого средняя температура поверхности уменьшилась до 500°C. Скорость вращения Земли вокруг своей оси значительно превышала нынешнюю, поэтому длина суток равнялась 4 часам 8 минутам.
Начало образования второй атмосферы (около 4,48 млрд. л.н.) коррелируется с завершением первичного распределения твердого вещества земного шара на сферические оболочки. Современная степень изученности Земли позволяет представлять нынешнюю нашу планету в виде сложной динамической системы, заключенной в толстостенный шар радиусом 6371 км. Массивная твердая оболочка шара (представленная корой и мантией) толщиной около 3000 км окружает полость, заполненную относительно жидким (вязким) веществом внешнего ядра. В центре этого жидкого слоя плавает небольшое твердое внутреннее ядро. От поверхности планеты к центру возрастают давление (до 3,61011 Па), плотность (до 12,8–13 г/см3) и температура (до ~6000 °C). Вращение такой сложной системы характеризуется разными скоростями обращения твердой оболочки и ядра.
Концентрация вещества планеты по плотности началась с обособления земного ядра радиусом ~3,4 тыс. км. Тяжелые металлы (преимущественно железо и его минералы, а также никель) погрузились в центр, формируя внутреннее суперплотное ядро радиусом ~1,2 тыс. км и внешний жидкий слой железо-никелевого ядра толщиной ~ 2,2 тыс. км. Внутреннее, центральное ядро в форме шара расположено на глубинах от 5150 до 6371 км. Элементный состав этой части земного шара представлен в основном железом (около 90 %) и никелем, кроме того, присутствуют минералы серы, кислорода и ряда других элементов. Внутреннее ядро проявляет себя в геофизических полях как неоднородное тело: наружная оболочка включает огромные, протяженные кристаллы (длиной около 10 км.), ориентированные с юга на север, а центральная часть ядра заполнена кристаллами, вытянутыми с запада на восток. Однако прежде вещество как внешнего, так и внутреннего ядра было жидким. Постепенное охлаждение недр Земли со скоростью около 100 °C за миллиард лет привело к затвердению внутреннего ядра. По одним оценкам твердое ядро сформировалось к рубежу около 1,24 млрд. л.н. (к концу эктазия), по другим – около 550 миллионов л.н. (к концу венда).
Сохранение к настоящему времени довольно высокой температуры во внутреннем ядре может быть объяснено, в какой-то степени радиоактивным распадом изотопов урана, тория и возможно некоторых других элементов. Хотя этот источник тепла не может быть основным по причине ничтожно малого содержания радиоактивных элементов в ядре по сравнению с земной корой. В земной коре эти, очень тяжелые долгоживущие радиоактивные элементы оказались потому, что их соединения с легкими элементами имеют малую плотность. Благодаря весьма высокому давлению вещество в ядре не кипит, несмотря на огромную температуру. Считается, что внутреннее ядро постепенно увеличивается в размерах за счет охлаждения и затвердевания переходной зоны от жидкого ядра.
Внешний слой железо-никелевого ядра (слой E), или, иначе говоря, внешнее ядро, представляет собой жидкую оболочку, которая обволакивает внутреннее твердое ядро. Состав внешнего ядра представлен в основном железом, его оксидами, никелем, в небольшой пропорции – кремнием, серой и другими примесями. Жидкое его состояние объясняется тем, что меньшее давление при высокой температуре в этом слое не обеспечивает затвердение раскаленного металла. Сохранение до настоящего времени на нашей планете жидкого состояния вещества во внешнем ядре является важным её отличием от других планет земного типа Солнечной системы. Наличие твердого ядра (слоя G) в жидкой оболочке представляется одной из тех важных особенностей планетного направления эволюции природы, которое связано с Земной развилкой. Конвекция вещества во внешнем ядре, которая подобна бушующему морю жидкого металла, порождает земной магнетизм. Появление и эволюция жизни на нашей планете во многом обязаны наличию геомагнитного поля, генерация которого связана с присутствием именно пары – внутреннее твердое ядро в жидком слое внешнего ядра, что является своеобразной динамо-машиной. Магнитосфера вокруг Земли защищает все живое от губительного воздействия заряженных частиц космоса и солнечного ветра, о чем описано выше, в разделах: Ранняя магнитная развилка и Поздняя магнитная развилка эволюции Земли.
Исследования показали, что внутреннее ядро и внешний слой вращаются в разные стороны. Внешнее жидкое ядро вращается вокруг своей оси с востока на запад, а внутреннее – с запада на восток. Интересно, что скорость вращения внутреннего ядра немного превышает скорость обращения в целом планеты. Центр Земли является мотором, который обеспечивает активность всех систем планеты, включая биосферу. Например, на Марсе всё ядро уже отвердело и там прекращена глобальная тектоника, отсутствует магнитное поле, способное защитить живые организмы. Эта планета лишилась внутренней энергии, она стала «мертвой», не способной к рождению и эволюции жизни.
Обособление земного ядра не означало прекращение его подпитывания новыми порциями тяжелого вещества, источником которого была и остается мощнейшая оболочка – двухслойная мантия, перекрывающая ядро. В мантии собрано две трети планетного объема, в то время как на ядро приходится одна треть. Мантия состоит в основном из соединений кремния, магния, кислорода, железа, кальция и алюминия. Её состав до сих пор остаётся очень близким к первичному веществу Земли, несмотря на продолжающиеся более 4 млрд. лет активные процессы химико-плотностной дифференциации. За счет такой дифференциации происходит вещественное обеднение мантии. Постепенно тяжелые соединения перемещаются из мантии к центру – в ядро. Легкие элементы и их минеральные комплексы всплывают в верхние слои планеты, формируя и обновляя литосферу, гидросферу и атмосферу. В результате в мантии теперь отсутствуют тяжелые железо, никель, а также соединение железа и серы – сульфид железа. А также произошло обеднение состава первичного вещества мантии легкими веществами (азотом, водородом, оксидами калия и натрия и др.). Зато за счет химико-плотностной дифференциации мантия обогатилась окислами кремния (SiO2) и магния (MgO). Первичное вещество Земли содержало 57 % этих двух окислов, а современная мантия – 83 %.
Мантия перекрыта корой, подошва которой называется границей Мохоровичича (сокращено, Мохо). Переход от коры к мантии отражается резким возрастанием плотности горных пород, который прослеживается на глубинах от 7 км (под океанами) до 70 км (под горными массивами). Мантия разделена на две части: верхнюю мантию и нижнюю. Верхняя мантия имеет толщину ~ 980 км, нижняя – 1920 км.
В верхней мантии самый верхний слой (волновод Гутенберга) имеет твердую кристаллическую структуру, не отличающуюся от вышележащей коры. Поэтому этот слой мантии совместно с корой образуют литосферу. Литосфера подстилается пластичной оболочкой мантии – астеносферой. Кровля астеносферы характеризуется фазовым переходом от кристаллических пород к пачке частично расплавленных пород, совпадающим с изотермой 1200–1300 °С. Она простирается на разных глубинах: от минимальных в зонах срединно-океанических хребтов под океанами (50 км) до максимальных (~ 200 км) под материками. Толщина астеносферы ~ 150–200 км и более. Нижняя граница нерезкая, приблизительно совпадает с изотермой 1500–1600 °С. Повышение температуры или снижение давления приводит к увеличению расплава в астеносфере и к образованию магматических камер, питающих магматизм. Астеносфера образует сплошную оболочку с изменяющейся по латерали вязкостью-пластичностью. Предельная глубина самых глубокофокусных землетрясений соответствует подошве глубокозалегающей астеносферы, до ~ 650 км, что указывает на определенную роль астеносферы в происхождении всех землетрясений. В астеносфере реализуется наиболее активная мантийная конвекция, движущая литосферные плиты. В астеносфере зарождаются все тектонические процессы, которые происходят в литосфере. Поэтому астеносфера в совокупности с литосферой называется тектоносферой.
Астеносфера состоит из 5–6 слоев, представленных чередованием твердых и расплавленных ультраосновных пород (дунитов, перидотитов и др., состоящих в основном из цветных минералов – оливина, пироксенов; бедных кремнием – SiO2; обогащенных магнием). В целом состав астеносферы представлен минералами: оливином 57 %, пироксеном 29 %, гранатом 23 %. Плавление пород при огромных температурах и давлениях на таких глубинах возможно только в присутствии воды. Откуда вода там? Дело в том, что находящийся там минерал роговая обманка имеет в своем составе связанную воду, которая при тех температурах приобретает свободную форму. Эта вода способна обеспечить частичное плавление пород астеносферы.
Вещество астеносферы не обладает пределом прочности, в отличие от литосферы, поэтому оно может деформироваться (течь) под действием даже очень малых избыточных давлений. Конвективное течение вещества астеносферного слоя увлекало за собой литосферу, расколов ее на ряд крупных и множество мелких плит. Под воздействием поднимающихся по разломам раскаленных магматических масс из мантии происходило раздвижение (спрединг) плит в океанах и наращивание новых участков океанической коры. Такие зоны называются срединно-океаническими хребтами. От этих зон литосферные плиты медленно раздвигаются. В зонах столкновения одна плита поддвигается под другую (субдукция), возникает глубокий океанический желоб. Рядом возникает цепь вулканов и гряда высоких гор (например, Гималаи поднялись 45 млн. л.н. в процессе столкновения Индийской и Евразийской плит). В океанических желобах литосферные плиты погружаются в земные недра с температурами более 500 °С, где происходит переплавление погрузившихся пород. Проникшие в мантию горные породы снова изливаются на поверхность в виде раскалённой магмы в зонах раздвижения плит. Такой механизм постоянной переработки вещества планеты за счет горизонтального перемещения литосферных плит способствует продолжению дифференциации вещества по плотности и формированию все более сложных минеральных форм. Астеносфера является основным источником эндогенных процессов в земной коре (магматизма, метаморфизма).
Под тектоносферой, между верхней и нижней мантией на глубине ~ 400 км существует следующий фазовый переход (слой Голицына[17], слой C, переходная зона толщиной 600 км), обусловленный увеличением давления с глубиной без изменения химического состава. На этой границе минералы граната и шпинели приобретают более плотную структуру перовскита и ильменита (FeTiO2, примеси: магний, марганец), характерную минералам нижней мантии. Распространяется нижняя мантия до глубин около 2900 км. Толщина её достигает 2230 км. Температура составляет до 2000 °С.
В составе нижней мантии (слой D), на её границе с ядром выделяется переходная зона на глубине около 2700 км, толщиной около 200 км. Здесь осуществляется значительное освобождение силикатной мантии от железа, которое переходит в ядро. В этой зоне облегченное вещество формирует плюмы, которые представляют собой горячие потоки мантийного вещества, движущиеся вверх от основания мантии. Плюм представляет собой субвертикальную колонну диаметром около 100 км с грибообразной верхней частью. Они поднимаются от границы мантии и ядра с глубины 2980 км или от границы нижней и верхней мантии с глубины около 660–670 км и выносят под литосферу вещество и тепло глубинных недр Земли. На поверхности Земли над плюмами возникает область вулканизма, формируются трапповые провинции, внутриконтинентальные рифты и другие геологические явления. Тектоника плюмов, наряду с тектоникой литосферных плит, определяет изменения в строении Земли, её рельефе и составе. Каким образом горные породы мантии, не менее твердые, чем сталь, способны течь в недрах планеты? Дело в том, что пластическим деформациям способствует очень длительная продолжительность времени, в течение которого массивы горных пород находятся в механическом напряжении. Высокое давление и значительная температура в недрах способны вызвать пластические деформации кристаллических минералов. Кроме того, в определенных жестких термобарических условиях кристаллические тела превращаются в аморфные, которые могут течь подобно жидкости. Породы на глубинах от 15–20 км и глубже, оставаясь твердыми, способны быть пластичными. Такие же минералы, как, например, галит (каменная соль, NaCl) обладают способностью течь и формировать грибообразные колонны, купола на глубинах от 2–3 км и более. В практике бурения нефтедобывающих скважин глубиной 3–6 км часто встречаются случаи, когда каменная соль или пласты глины проявляют свои пластичные свойства тем, что сдавливают в стволе скважины буровые инструменты.
Недра Земли представляют собой сложный механизм генерации и поставки энергии на поверхность. В этом механизме невозможно выделить главный элемент, поскольку каждый является необходимой частью системы. Тем не менее, подчеркнем, что в мантии, всегда – начиная с её обособления от ядра, происходят мощные конвективные движения, благодаря которым тепло ядра и самой мантии передается в вышележащие сферы. Состав ядра постепенно изменяется за счет перемещения струй вещества из ядра в мантию. Иногда эти струи даже проникают на поверхность планеты, где их вещество окисляется и вновь погружается в форме столбообразных потоков к центру Земли. Это приводит к ответному перетоку струй вещества из ядра в мантию. Исследования изотопов вольфрама, которые присутствует в ядре и в мантии, показали, что период земной истории после распределения вещества планеты на оболочки, между 4,3 и 2,7 миллиарда л.н. характеризовался почти полным отсутствием обмена материала между ядром и мантией. Зато, начиная с границы 2,5 млрд. л.н., такой обмен до сих пор активно протекает. Интересно, что временной рубеж новой активизации перетока материала ядра в мантию и обратно совпал с поворотом эволюции на Окислительной развилке. Процессы в мантии являются источником энергии и вещества для вулканизма, землетрясений, горообразования, формирования рудных месторождений и движения тектонических плит.
После краткого ознакомления с внутренним строением нашей планеты, в следующем разделе перечислим некоторые особенности Земли, которые привели ее к обитаемости. Эти характеристики, возможно, являются уникальными, возникшими благодаря повороту эволюции природы на Земной развилке. Все другие планетные развилки вели к формированию планет, обладающих определенной совокупностью общих характеристик, но в каждом случае это были объекты с большим набором собственных данных. Природа всегда находится в поиске нового, и ей не свойственно повторяться полностью, во всех деталях. Кто-то в той или иной части нашей Вселенной, может быть, и обладает свойством осознавать свое существование, но почти невозможно, чтобы эти разумные существа были похожими обликом на нас. Невероятно много событий в эволюционном пути тех существ должно совпасть с эволюцией природы до земного человека, чтобы получилось два аналога. Земная развилка эволюции Солнечной системы представляется одним из решающих событий в судьбе человека разумного.
По мнению ученых, среди не менее 600 миллиардов планет Галактики имеется приблизительно 1 миллиард тех, которые сходны по размеру с Землей. Образование этих космических тел дало начало такому же числу развилок планетной эволюции. К настоящему времени выявлено около 6000 экзопланет в нашей Галактике. Эта цифра постоянно увеличивается за счет открытия все новых планет вне пределов Солнечной системы. Наблюдаемая астрономами несходность всех известных космических объектов убеждает в том, что при подобии каких-то характеристик планет, все же каждая из них эволюционирует своим неповторимым образом.
17
Под астеносферой залегает слой Голицина, фазовое состояние которого заставляет атомы и минералы приобретать очень плотную упаковку, значительно повышающую плотность горных пород. Под слоем Голицина (на глубинах 700-1000 км) распространяется нижняя мантия, в которой еще больше уплотняется структура вещества. Нижний слой мантии прослеживается до глубины 2900 км, с которой начинается жидкое внешнее ядро.