Читать книгу Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей - - Страница 6

ПЕРВЫЙ РАЗДЕЛ. ОБЩИЕ СВЕДЕНИЯ
ГЛАВА 3. КЛЮЧЕВЫЕ ТЕХНОЛОГИИ В СТРОИТЕЛЬСТВЕ ПО МЕТОДУ ЩИТОВОЙ ПРОХОДКИ

Оглавление

3.1. ТЕХНОЛОГИИ ГЕОЛОГИЧЕСКИХ ИЗЫСКАНИЙ

Цель геологических изысканий заключается в исследовании инженерно-геологических и гидрометеорологических условий там, где будет располагаться туннель, а также в определении влияния производства работ и эксплуатации туннеля на сохранность окружающей среды. Это делается, чтобы предоставить необходимые изыскательские материалы для планирования, проектирования и производства работ, а также чтобы провести анализ существующих горных пород и окружающей среды и выдать рациональные проект проектирования и меры производства работ, тем самым обеспечив экономичное, безопасное и надежное производство работ. Этап изысканий должен быть совмещен с этапом проектирования, обычно изыскания подразделяются на три этапа: ТЭО, первоначальные изыскания и подробные изыскания.


3.1.1. Способы туннельных изысканий

Туннельные изыскания главным образом включают в себя коллекционирование и исследование имеющихся материалов; исследования, съемку и изыскания; испытания и длительное наблюдение и другие виды. Вместе с развитием науки применяются все новые технологии в изыскательских работах. Целью изысканий является обеспечение безопасного, быстрого и экономичного производства работ методом щитовой проходки. Изыскания можно разделить на общие исследования, исследования преград, изыскания рельефа и геологические изыскания. Благодаря изысканиям можно получить основную документацию, которая понадобится на каждом этапе планирования, проектирования, производства работ и менеджмента эксплуатации. Результаты изысканий также необходимы для выбора местоположения туннеля и маршрута, являются доказательной базой для проведения МОС и способов осуществления работ, определяют масштаб производства. Поэтому при изыскательских работах необходимо полноценно продумать и реализовать вышеуказанные пункты.

1) Общие исследования

Главным образом под общими исследованиями понимается исследование текущей обстановки и планирования грунтов, дорожных коммуникаций, защиты окружающей среды и архитектурных находок, подземных вод, производственной площадки, электричества и воды и других условий окружающей среды. Общие исследования ориентированы на изыскания окружающих мест, которые находятся вблизи от проходящего маршрута, главным образом изыскания проводятся для прокладывания маршрута, проведения технически-экономического обоснования и утверждения масштабов строительства.

Исследования текущей обстановки и планировки территории подразумевают под собой использование и планирование с/х земель, горных лесов и водоемов в соответствии с имеющимися картами и проведением изысканий по месту. В городских районах необходимо обратить особое внимание на планирование территории в изучаемом районе (жилые здания, бизнес, индустрия), текущей обстановки, имущественных прав, масштабы производства, ограничительные условия. Необходимо полноценно овладеть различными подземными и надземными факторами, а также хорошо продумать маршрут, проектирование и производство работ.

При производстве работ под землей проходческим щитом необходимо провести изыскания по интенсивности движения, полосе отведения, ограничениям во время обратной засыпки, разработке дорожной одежды. При производстве работ велико влияние расположения вертикальных шахт на дорожные коммуникации. При выборе расположения необходимо полностью продумать функциональность шахты, проходимость потока транспортных средств, расположение площадки, транспортировку и обработку шлака, транспортировку материалов и оборудования и других условий. Изыскания поверхностных воды подразумевают изыскания профилей водоемов (рек, озер и т. д.), конструкции защитных дамб, геологических условий, мостов, водной охранной зоны, водного транспорта и т. д.

Щитовая проходка предъявляет достаточно высокие требования к строительной площадке, использованию воды и электричества. Необходимо провести полноценное исследование по поводу условий поставки.

Изыскания охраны окружающей среды направлены на изучение всевозможных влияний щитовой проходки на окружающую среду, перед началом и в процессе производства работ необходимо провести различные изыскания.

При возникновении потребности на некоторых объектах по окончанию работ все еще проводятся дополнительные проверки, чтобы овладеть влиянием на окружающую среду, которое включает в себя: шумные звуки и вибрация, деформация фундамента, содержание вредных веществ в болотных газах и газах с недостатком кислорода, химическое бетонирование, обработка и транспортировка шлака.

2) Объект изысканий

Геологические изыскания должны включать в себя наземные и подземные сооружения, подземные установки, водные скважины и старые скважины, остатки строительных и временных зданий и сооружений и другие объекты.

(1) Что касается наземных сооружений, то нужно провести изыскания формы строения (если квартирная постройка, то необходимо проверить материал, из которого выполнена данная конструкция; если мостовая конструкция, то нужно проверить статически определимая или статически неопределимая и т. д.), тип фундамента, заложен ли под землей фундамент, есть ли подвальное или цокольное помещение. Что касается подземных сооружений (подземная парковка, подземный ТЦ, метро и т. д.), то необходимо исследовать тип конструкции, глубину заложения фундамента сооружения и др. Также важным фактором является исследование условий эксплуатации данных сооружений, особенно нужно провести детальные изыскания в отношении сооружений, снабженных точными приборами.

(2) Что касается наземных и подземных водопроводов, электрических кабелей, кабелей связи и других подземных предметов, то необходимо провести предварительное исследование о том, как проложены те или иные коммуникации, нужно полноценно изучить все о будущем месте заложения вертикальной скважины. Помимо прочтения необходимых технических документов, имеющихся у руководства, также нужно по месту с помощью пробного шурфа или геологических радаров и других поисковых устройств проверить актуальное местоположение, масштаб, глубину заложения, состояние и другие условия коммуникаций.

(3) Что касается водных скважин и старых колодцев, то необходимо удостовериться, не будут ли возникать в процессе щитовой проходки такие риски, как извержение, недостаток кислорода и др. По сравнению с другими видами щитовой проходки при использовании щита со сжатым воздухом гораздо больше сфера изысканий, которая может содержать расположение водной скважины, ее глубину и использование; наличие недостатка кислорода, степень недостатка и др. При наличии возможности загрязнения или недостаточно высокого уровня воды необходимо проверить изменения уровня воды за год и физические свойства воды. При исследовании старых скважин нужно, опираясь на материалы от владельца, проверить, нет ли несоответствий.

Как правило, проводить исследования, нацеленные на сооружения и остатки ВСиЗ, достаточно сложно. Но чтобы избежать внезапных препятствий, которые могут встретиться на пути проходки, необходимо прояснить всю ситуацию у владельца земель. Кроме этого нужно исследовать уровень загрязнения грунта и подземных вод, качество обратной засыпки, количество остатков. Например, при планировании постройки сооружения или подземных коммуникаций необходимо проверить масштаб, глубину и т. д., чтобы избежать взаимовлияния щитовой проходки и этих зданий, необходимо полностью проговорить конструкцию, способ производства работ и сроки.

3) Рекогносцировка и геоизыскания

Цель рекогносцировки и геологических изысканий состоит в предоставлении необходимых базовых материалов для осуществления планирования, проектирования, производства работ и защитного управления. Геологические изыскания для щитовой проходки главным образом используются для выбора маршрута туннеля, подтверждения возможности использования щитовой проходки, предоставления доказательств для осуществления мероприятий по охране окружающей среды, вынесения решения по масштабу, характеру строительства, также они являются материалом по защитному управлению по окончании производства работ. Обычно в себя данный вид изысканий включает состав рельефа и геологических слоев, геологию, подземные воды, недостаток кислорода, содержание вредных веществ и др. Поскольку топографические и геологические условия являются решающим фактором, который определяет степень затруднения производства работ и проектирования щитовой проходки, то к данному процессу стоит отнестись крайне скрупулезно.

(1) Поскольку рельеф местности часто отражает подземные вмещающие породы, то первым шагом будет осмотр и овладение рельефом. Если на изучаемом месте холмы и возвышенности, то под землей обычно не будет аллювиальных отложений, поэтому редко встречаются слабые грунты. Кроме этого даже при наличии таких отложений можно, благодаря тщательным исследованиям топографических условий и условий окружающей среды, установить, в какой-то степени состав слоев подземных вмещающих пород. При некоторых геологических условиях, когда трасса туннеля в местах пересечений с плоскогорьем и равнинной местностью наклоняется или параллельна им, то может возникнуть очевидный уклон.

(2) Вместе с топографическими изысканиями накапливаются и исследуются документы, овладевая составом геологических слоев, которые находятся вдоль трассы. В районе, где производится щитовая проходка, обычно много полезных материалов. Наиболее представительными являются геологические карты, схемы пригодного грунта и т. д. Одновременно с этим с помощью бурения скважины стандартным пенетрационным испытанием проводятся основные изыскания, по результатам которых получается геологический разрез с пометкой всех слоев. Таким образом можно определить грунтовые проблемы во время производства работ щитовой проходкой и тем самым внимательно изучить эти самые проблемы.

(3) Обычно можно выполнять строительство проходческим щитом для любых оснований из вмещающих пород с применением проходческих щитов с закрытой лицевой стороной. Но при применении щита с нагнетанием глинистой воды, связный грунт будет приставать к резцовой головке и барокамере, что приводит к засорению и влияет на проходку; в рыхлом песчаном пласте будет возникать обвал забоя из-за трудности образования целостной глинистой пленки, что приведет к оседанию основания и провалу земли; а на гравийном пласте может возникнуть выкрашивание галек, что приведет к развалу забоя, износу, излому ножей или засорению грунторазгрузочной трубы. Поэтому надо производить расследование состава зерен, коэффициент фильтрации и т. д. (для гравийного пласта особенно расследовать форму, размер, содержание, твердость и неравномерность). И также при применении щита с грунтопригрузом, чтобы проектировать условие пластической текучести в барокамере, материал, форму режущей головки, форму прореза резцовой головки, винтового выбрасывателя и т. д., параметры требуют расследования формы, размера, твердости и состава зерна (в частности, содержания мелкозернистых), коэффициента фильтрации крупных галек.

В соответствии с условиями производства работ при применении сжатого воздуха на рыхлых песчаных слоях ниже уровня воды и снижении давления воздуха снизу рабочей поверхности могут одновременно выливаться вода и высыпаться песок; если повысить давление, то песок в верхней части рабочей поверхности может пересохнуть, может быть потеряна глинистость, тем самым на мизерных аллювиях могут возникнуть зыбучие пески. Особенно когда слой вскрышной породы очень тонок, то совсем сложно достичь идеального эффекта по сжатому воздуху и может возникнуть утечка воздуха. При возникновении вышеупомянутых рисков, помимо измерения значения N-стандартного испытания на пенетрацию грунта, также нужно провести гранулометрический анализ, определить коэффициент пористости, на месте провести испытание водопроницаемости и определить минимальный коэффициент пористости и т. д. При производстве работ на слабых грунтах (пылеватый, глинистый), где значение N 1-2 и ниже, возникает риск снижения прочности из-за понижения уровня грунтовых вод, нужно проводить испытание на прочность. Говоря о достаточно слабых глинистых слоях, помимо вышеуказанных испытаний, лучше всего также определить содержание песка, влажность, коэффициент густоты, силу сцепления и т. д.

(4) При исследовании скважины необходимо определить местоположение подземных вод, но поскольку давление грунтовых вод, содержащихся в водянистых слоях, необязательно будет гидростатическим, нужно по отдельности определить поровое давление вод в каждом слое, где они содержатся. Рядом с районами, где есть горы и возвышенности или в слоях с гравием в пролювиальном веерообразном конусе, часто присутствуют артезианские напоры с излишком гидростатического давления. Наоборот, в городских и других районах часто по причине чрезмерной откачки воды давление в напоре воды будет ниже гидростатического, а иногда даже не бывает напора.

Такие уровни подземных вод и артезианские напоры воды могут меняться из-за человеческого фактора или вместе с сезонными изменениями, поэтому необходимо определить, при каких условиях происходит напор. Несмотря на то, что c помощью анализа гранулометрического состава можно примерно определить коэффициент фильтрации, лучше по месту провести испытание на водопроницаемость. Кроме этого, одновременно с исследованием подземных вод и артезианского напора, важным является исследование физических свойств подземных вод (содержание соли).

(5) Кроме того, часто возникают опасности, связанные с выбросом и взрывом биогаза, чтобы обеспечить безопасность строительной среды, необходимо выяснить, нет ли утечки вредного газа. Среди других видов вредных газов есть сероводород и газообразный оксид азота. Убедившись в наличии сероводорода, обратите внимание на проблему коррозии футеровки. Следовательно, когда ожидается наличие вышеупомянутых газов, надо исследовать состав вредных газов в порах. Если действительно есть газы с дефицитом кислорода или вредные газы, необходимо рассмотреть меры вентиляции и даже меры взрывозащиты.

В процессе строительства щита изыскания на этапе предварительного проектирования основаны на бурении с испытаниями на месте, инженерно-геологическими испытаниями и геофизическими исследованиями для приблизительного определения геологии пласта проходного участка щита и ориентировочного определения основных физико-механических свойств каждого слоя. На стадии строительного чертежа геологическое исследование должно дополнительно изучить литологию и физико-механические параметры поверхности выемки защитного туннеля и обеспечить основу для строительного чертежа и выбора щита. Требования к топографии и геологическим изысканиям для проекта защитного туннеля показаны в таблице 3-1.


Таблица 3-1. Топографо-геологические изыскания щитового туннелестроения


При проведении геологических изысканий для щитовой проходки необходимо использовать комплексный подход, детально изучив геологическую ситуацию районов, через которые проложена трасса. Главным методом данного способа является бурение скважин. Количество шурфов должно быть определено степенью сложности геологических условий. Скважины должны располагаться по обеим сторонам трассы, их местоположение должно быть за границей трассы 2 – 5 м. Все скважины не должны располагаться внутри трассы туннеля, соединительных каналах и других долговечных конструкциях. По завершению испытаний необходимо ликвидировать скважины обратной засыпкой. Интервал скважин можно определить в соответствии с таблицей 3-2.


Таблица 3-2. Интервалы между скважинами (м)


Обыкновенная глубина бурения H1, определяется по формуле H1=H+D+5 (m); подконтрольная глубина бурения H2 определяется по формуле H2=H+D+2D (m), где Н – высота земляного покрова, D – внешний диаметр туннеля. Физические изыскания также являются важным методом изысканий. На месте с подходящим рельефом, геологическими условиями надо выявлять назначение разнообразных физических разведок, чтобы производить комплексную разведку. Из-за ограниченности физической разведки и многих вариантов результатов, в сочетании с бурением, разведкой канавами или выработками, дешифрированием и др. геологическими данными, необходимо производить определение физических механических показателей, разделение стратификаций породного грунта, обоснование зондирования подземных коммуникации, сооружений. Количество отверстий для выборочного испытания и испытание на месте не должно быть меньше чем 1/2 общих отверстий. Для участка контроля и влияния на проект маршрута щита надо производить аналитическое испытание по характеру, требованию конкретного объекта и со сбором образца породы, грунта и воды. Содержание испытания определяется на основании конкретного геологического условия и требуемых параметров породы, грунта и воды для проектирования.


3.1.2. Методы обследования туннелей

При инженерных изысканиях в туннелях, когда необходимо установить характер и распределение горных пород и грунта, образцы горных пород и грунта берутся из-под земли для проведения испытаний в помещении с целью определения физических и механических свойств горных пород и грунта. Методы разведки, такие как выемка грунта, бурение, и геофизические исследования.

1) Копка

(1) Исследование котлована – грунтовый котлован, который вырывается вертикально вниз с помощью машин или рабочей силы или называется испытательным котлованом, а глубокий – разведочным колодцем. Участок разведки карьера можно разделить на круглые, овальные, квадратные, прямоугольные и т. д. По форме проема, а его площадь поперечного сечения составляет 1 м х 1 м, 5 м х 1 м. Выбор размера зависит от характера, назначения и глубины почвенного слоя. Глубина котлована обычно составляет от 2 до 3 м.

(2) Исследование траншеи – выкапывают длинный и узкий желоб, ширина которого обычно равна 0. 6 ~ 1. 0 м, длина зависит от потребности, глубина обычно меньше 2 м, рытье траншей подходит для мест, где коренная порода не является толстой, ее часто используют для отслеживания линии конструкции, для определения толщины и характера уклона слоя и остаточного слоя, и обнажения стратиграфической последовательности. Как правило, рытье траншеи следует устраивать перпендикулярно простиранию пласта или структурной линии.

2) Простое бурение

Простое бурение – метод, часто используемый в инженерно-геологических изысканиях, преимуществами которого являются легкий инструмент, небольшие размеры, удобство в эксплуатации, более быстрая съемка и низкая трудоемкость. Недостаток заключается в том, что с его помощью нельзя брать пробы почвы или пробы в ненарушенном состоянии, а также нелегко пробурить плотные или твердые породы. Обычно используемые простые буровые инструменты включают небольшие резьбовые сверла, сверла и лоянскую лопату.

(1) Изыскания винтовым буром

Конструкция бурового инструмента небольшого резьбового сверла включает в себя резьбовые буровые коронки и буровые штанги, которые просверливаются ручным роторным бурением под давлением, что подходит для связного грунта и субпесчаных слоев грунта. Можно получить образцы нарушенного грунта и глубину бурения меньше 6 м.

(2) Зонд для сверления

Буровой зонд, также называемый конусным зондом, заключается в использовании бурового инструмента, который устремляется вниз в почву, чтобы определить толщину рыхлой покрывающей породы или глубину заглубленной коренной породы на ощупь. Глубина разведки обычно до 10 м. Его часто используют для определения мощности лессовых пещер, болот, слабых грунтов и уклона их подошв.

(3) Лоянская лопата

Лоянская лопата для разведки заключается в том, чтобы использовать силу тяжести лоянской лопаты, врезаться в почву и просверлить круглое отверстие малого диаметра и большой глубины, в которое могут быть взяты тревожные пробы почвы. Глубина проникновения обычно составляет 10 м, а в лессовом слое она может достигать около 30 м.

3) Бурение

В инженерно-геологоразведочных работах бурение – один из важнейших и широко используемых методов разведки, позволяющий получить достоверные геологические данные о глубоких пластах. Обычно он используется при копании, потому что простое бурение не может достичь этой цели. Чтобы обеспечить качество инженерно-геологических буровых работ и избежать пропуска или неправильного обнаружения важных геологических границ, во время процесса бурения не следует оставлять подозрительных мест, а также следует проводить точный анализ и оценку полученных геологических данных. Используйте геологические данные, полученные в результате наземных наблюдений, для руководства буровыми работами и проверки результатов бурения. По способу разрушения горных пород бурение можно разделить на: ударное бурение, вращательное бурение, ударно-вращательное бурение и вибрационное бурение.

4) Геофизические исследования

Любой метод, основанный на различии физических свойств различных геотехнологий и использующий специальные инструменты для наблюдения естественных или искусственных изменений в физическом поле для оценки подземных геологических условий, в совокупности называется геофизической разведкой.

Геофизические исследования можно разделить на электроразведку, электромагнитную разведку, сейсморазведку, акустическое обнаружение, гравиметрическую разведку, магниторазведку и радиоактивную разведку. В туннельной инженерной геологии чаще используются электроразведка, сейсморазведка и геологоразведка.

Электроразведка – это оценка подземной геологии путем измерения разницы в электропроводности породы и почвы. Между слоями грунта существует определенная разница в проводимости, а измеренный слой имеет определенную длину, ширину и толщину, а относительная глубина заглубления не слишком велика; когда местность относительно плоская и факторы помех, такие как плавающий ток и промышленные мощности переменного тока не велики, с помощью электрических исследований можно добиться лучших результатов.

Сейсмическая разведка – это метод геофизических исследований для обнаружения подземных геологических условий путем распространения искусственно возбужденных упругих волн, основанных на различии упругих свойств горных пород и грунта. Сейсмическая разведка напрямую использует внутренние свойства (плотность и упругость) горных пород, является более точной, чем другие геофизические методы, и может обнаруживать большие глубины. В инженерно-геологических изысканиях сейсморазведка в основном используется для определения толщины перекрывающих отложений, заглубленной глубины и толщины горной породы, местоположения и возникновения зоны разлома и т. д.; для изучения упругости породы и для определения коэффициента упругости породы.

Геологический радар (электромагнитный метод разведки) – это электромагнитное устройство, которое использует отражение высокочастотных электромагнитных импульсных волн для обнаружения пластовых структур и заглубленных объектов в грунте. Поэтому его также называют георадиолокацией. Он излучает широкополосные импульсные волны под землей через передающую антенну. При обнаружении различий в диэлектрической проницаемости и проводимости различных сред они будут отражаться на их поверхности раздела, а электромагнитные волны, возвращающиеся на поверхность, будут приниматься приемной антенной. Цель определяется на основе полученного эхо-сигнала, и рассчитываются ее расстояние и положение. Может использоваться для обнаружения с воздуха, земли и скважин, но в основном на земле.


3.2. КЛЮЧЕВЫЕ ТЕХНОЛОГИИ ПРИ ВЫБОРЕ ЩИТА

Щитовой метод является одним из самых передовых методов строительства подземных туннелей. С тех пор, как Брюнель впервые использовал выкопанную вручную технологию прямоугольного щита для рытья первого щитового туннеля под Темзой в 1825 году, технология щита прошла много испытаний. Более чем 190 лет сделали метод проходки защитных туннелей подходящим для строительства в любых гидрогеологических условиях, будь то мягкие, твердые, с грунтовыми водами или без них, проходка защитных туннелей может использоваться при строительстве подземных тоннелей.

Изобретение Брюнеля первого в мире щита – проложило только 370-метровый туннель и просуществовало 18 лет. Во время строительства он испытал пять огромных потоков воды, и шесть жизней были принесены в жертву. В настоящее время технология строительства защитных туннелей непрерывно совершенствуется во многих странах мира, но при продвижении и применении было несколько несчастных случаев. Около 70% этих несчастных случаев вызваны ошибками при выборе и проектировании защитных ограждений, которые повлияли на период строительства всего проекта, но также привели к большим экономическим потерям и ненужным человеческим жертвам.

Щиты изготавливаются «на заказ» в соответствии с конкретными особенностями, такими как инженерная геология, гидрогеология, формы рельефа, наземные здания, а также подземные трубопроводы и сооружения.


3.2.1. Принципы выбора щитовой проходки

Выбор щитовой проходки является одним из ключевых факторов, обеспечивающим безопасную, экологичную, качественную, экономичную эксплуатацию щитовой проходки туннелей.

Среди принципов выбора можно выделить безопасность, технологичность, экономичность, которые связаны друг с другом. Главным принципом является безопасность, основной составляющей которого является гарантия стабильности забоя. При этом необходимо обращать внимание на геологические условия (классификация, прочность, коэффициент фильтрации, гранулометрический состав, фракции) и условия подземных вод, также необходимо полноценно указать условия строительной площадки, условия окружающей среды около вертикального шурфа, условия строительных подземных и надземных сооружений, располагающихся вдоль трассы, особенные условия площадки и др. На этой базе необходимо учитывать технологичность и экономичность, чтобы выбрать подходящий туннелепроходческий комплекс. При ошибочном решении необходимо будет использовать много вспомогательных решений, и возможно приведет это к невозможности туннельной проходки или даже возникновению серьезных неполадок во время производства работ. При выборе щита необходимо следовать следующим правилам:

(1) Необходимо адаптироваться под инженерно-геологические и гидрометеорологические условия, прежде всего, нужно отвечать требованиям безопасности на объекте.

(2) Необходимо объединить безопасность, передовые технологии и экономичность, в условиях надежного обеспечения безопасности необходимо всецело учитывать технологичность и экономичность.

(3)Необходимо удовлетворить требованиям внешнего диаметра туннеля, его длины, глубины залегания, строительной площадке, окружающей среды и т. д.

(4) Необходимо отвечать требованиям безопасности, качества, сроков производства работ, экологичности и формирования стоимости выполнения работ.

(5) Мощности вспомогательного оборудования должны подходить главному оборудованию щита, производственные мощности должны совпадать со скоростью проходки, одновременно с этим необходимо обладать такими особенностями, как: безопасность производства работ, несложная конструкция, рациональное расположение оборудования, легкость в ТО.

(6) Известность, уровень доверия, обеспечение техсервиса завода-производителя щита.

В соответствии с вышеуказанными принципами необходимо провести анализ основных технических параметров и типа туннелепроходческого комплекса, чтобы гарантировать безопасность и надежность щитовой проходки, тем самым определить наиболее подходящий щит и наилучшие методы производства работ. Выбор щита является ключевым звеном при производстве работ, это напрямую влияет на безопасность, качество, технологию и себестоимость производства работ щитовой проходкой. Необходимо крайне внимательно отнестись к выбору щита, чтобы обеспечить оптимальный ход производства работ и их завершение.


3.2.2. Шаги при выборе проходческого комплекса

(1) Основываясь на изучении инженерно-геологических, гидрометеорологических условий, окружающей среды, требований сроков производства работ, экономичности и т. д., выбрать тип проходческого щита. В соответствии с устойчивостью вмещающих пород, необходимо выбрать щит открытого или закрытого типа. В соответствии с геологическими условиями необходимо выбрать щит для слабых пород или комплексного типа.

(2) При выборе щита закрытого типа необходимо в соответствии с коэффициентом фильтрации, давлением подземных вод, вспомогательных методов по производству работ, окружающей средой, безопасностью и другими факторами выбрать щит с гидропригрузом или грунтопригрузом.

(3) Если щит с гидропригрузом и грунтопригрузом не может удовлетворить требованиям забоя, то нужно подумать о выборе щита комплексного типа.

(4) В соответствии с материалами геологических изысканий необходимо произвести расчет и выбор главных функциональных агрегатов щита, спроектировать (например, вид привода и тип конструкции резцовой головки, количество забоя, виды режущих устройств и их расположение, вид и габариты шнекового транспортера, конструкцию призабойной стены и вид шламовой двери, расположение и вид дробильной установки и т. д.) и утвердить в соответствии с геологическими условиями главные технические параметры, при выборе которых необходимо провести точный расчет (диаметр резцовой головки, скорость оборотов, крутящий момент, мощность привода, скорость проходки и толкания, мощность, диаметр, длина шнека и т. д.).

(5) В соответствии с геологическими условиями выбрать оборудование для «хвоста» комплекса, которое будет совпадать по параметрам со скоростью проходки.


3.2.3. Теория и практика выбора щитовых комплексов

Способы выбора проходческого щита главным образом придерживаются теории треугольника.

Общие принципы теории треугольника – это «центром является устойчивость забоя, основной частью являются инженерно-геологические и гидрометеорологические условия; доказательной базой являются фракции, коэффициент фильтрации, давление подземных вод , также необходимо комплексно продумать актуальную ситуацию производства работ; гарантировать, что выбранный комплекс будет отвечать общей цели по устойчивости, проходке и выбросу». Вкратце это можно сказать следующим образом: «один центр, две основы, три доказательства и три действительности, три большие цели» (рис. 3-1).

1) Стабильность забоя.

При туннельном строительстве щитопроходным способом необходимо решить три основных вопроса: режущая поверхность (экскавация), давление уравновешивающей поверхности (стабилизация), вывод шлакового грунта из призабойного отсека (вывод).


Рис. 3-1. Схема треугольной теории выбора проходческого щита


Касательно режущей поверхности (экскавации) при одинаковых условиях пласта и резцовой головки, все виды щитов примерно одинаковы, отличается лишь давление уравновешивающей поверхности (стабилизация) и способ выведения шлакового грунта (вывод).

Конструкция стабилизации забоя в щитопроходческом комплексе подразделяется на два вида: открытого типа и закрытого типа. В обоих видах вопрос стабилизации забоя решается по-разному. Открытый тип подразумевает опору на твердость грунтовой поверхности забоя, а в закрытом типе – при помощи давления грунтовой массы (щит с грунтопригрузом), либо давления глинистой воды (щит с гидропригрузом) оказывается сопротивление стремящейся к высвобождению нагрузке поверхности забоя, тем самым сохраняется его стабильность.

(1) Стабильность забоя при использовании щита открытого типа.

При использовании щита открытого типа, стабильность поверхности забоя во время прохождения вперед осуществляется посредством установленной в щите грунтосдерживающего механизма и улучшения состояния грунтовой массы.

1. Грунтосдерживающий механизм

Грунтосдерживающий механизм щита открытого типа состоит из подвижной стрехи, передвижной грунтосдерживающей плиты и толкающих гидроцилиндров. Сначала установленная в передней части щита грунтосдерживающая стреха врезается в грунт, одновременно предотвращая обрушение забоя и осуществляя проходку вперед, затем передвижная грунтосдерживающая плита, расположенная в экскавируемой зоне, с помощью гидроцилиндров осуществляет опорное сдерживание с одновременной проходкой вперед.

2. Улучшение грунта забоя

Существует несколько способов улучшения грунта забоя: пневматический (нагнетание воздуха), способ осаждения воды, способ химического цементирования и др. В зависимости от условий конкретного проекта, могут применяться несколько комбинированных способов.

а. Пневматический способ использует гидростатичность и эффект нагнетания воздуха в грунтовом основании в качестве объекта, с помощью грунтосдерживающего эффекта отвода воды сжатым воздухом предотвращается затопление и обвал забоя. В данном способе применяется сравнительно простое оборудование, позволяющее с легкостью осуществлять управление параметрами давления, благодаря чему он чаще всего используется в щитах открытого типа. Однако, поскольку работы выполняются в условиях высокого давления, возникают проблемы, связанные с окружающей средой работ, эффективностью работ и т. д., к тому же, вследствие различия грунтовых слоев, приходится прибегать к мерам, противодействующим утечке воздуха, извержению наружу и переполнению бескислородного воздуха, поэтому данный способ на сегодняшний день применяется нечасто.

b. Способ понижения уровня подземных вод применяется по вектору расположения туннеля, с помощью метода создания скважинно-точек и метода создания глубоких скважин на поверхности грунта, удаляются подземные воды в зоне забоя с целью укрепления основание грунта. Метод скважинно-точек и другие способы для понижения уровня подземных вод применяются также и внутри туннеля.

c. Метод химического цементирования – это еще один способ обеспечения стабильности забоя путем принудительной закачки химической бетонирующей суспензии, который применяется в зоне грунтового зазора с целью повышения водонепроницаемости и прочности. Данный метод обладает хорошей технологичностью, достаточно часто используется для улучшения зон в ограниченных областях. Применяется два вида работ по закачке суспензии: первый вид применяется перед осуществлением проходки щита, второй вид применяется по мере осуществления проходки путем закачки суспензии внутри туннеля.

(2) Принцип уравновешивания давления забоя при проходке щитом закрытого типа.

При проходке щитом закрытого типа уравновешивание давления забоя чаще всего происходит с помощью гидропригруза и грунтопригруза. Прежде всего, стоит понять, что такое грунтопригруз и что такое гидропригруз.

На рис. 3-2 показан принцип уравновешивания с помощью грунтопригруза, из которого видно, как посредством регулировки скорости проходки и скорости вращения шлакоотводящего шнека регулируется объем скапливающегося в призабойном отсеке грунта, тем самым производится уравновешивание давления грунта и жидкости в забое. В целях достижения наилучшего уравновешивания забоя, шлаковый грунт в призабойном отсеке должен обладать достаточной вязкостью и текучестью. Однако, вследствие того, что медиаторной средой регулировки давления выступает шлаковый грунт в призабойном отсеке, то имеется определенная задержка, поэтому степень точности регулировки давления обычно достигает лишь 0.1 МПа.

На рис. 3-3 показан принцип уравновешивания с помощью гидропригруза, из которого видно, как посредством сжатого воздуха в кессонном отсеке щита уравновешивается давление грунта и вод забоя. В целях достижения наилучшего уравновешивания забоя шлаковый грунт в призабойном отсеке должен обладать достаточной вязкостью и текучестью. Так как воздушное давление можно регулировать с достаточной скоростью и точностью, то в процессе стабилизации забоя щит с гидропригрузом имеет естественное преимущество перед щитом с грунтопригрузом.


Рис. 3-2. Принцип грунтопригруза


Рис.3-3. Принцип гидропригруза


(3) Стабилизация забоя при использовании щита с грунтопригрузом.

Механизм стабилизации забоя при использовании щита с грунтопригрузом имеет следующие особенности:

1. В вынутый шлаковый грунт добавляются определенные добавки, посредством принудительного перемешивания резцовой головкой и лопастями миксера достигается улучшение его пластичности, текучести и водоотталкивающих свойств.

2. Когда шлаковый грунт заполняет призабойный отсек и полости шнека, с помощью толкающего усилия гидроцилиндров продвижения щита производится давление на шлаковый грунт, тем самым создается уравновешивание давления грунта и грунтовых вод забоя.

Поэтому в целях обеспечения стабилизации давления грунта в забое можно, при условии обеспечения стабильного состояния забоя, успешно осуществить вывод шлакового грунта. В то же время необходимо произвести улучшение шлакового грунта, обеспечив пластичность, текучесть и водоотталкивающие свойства.

Когда в вынимаемом шлаковом грунте мелкодисперсные частицы составляют около 30% объема, то перемешивание при хорошем гранулометрическом составе обеспечивает его пластичность и текучесть. Однако когда содержание песка и гравия относительно высокое, а гранулометрический состав не очень хороший, необходимо в шлаковый грунт добавить бентонит либо глинистые добавки и перемешать, регулируя тем самым гранулометрический состав. Для улучшения характеристик шлака при экскавации иногда добавляют пенистые либо полимерные материалы. В ситуациях, когда гранулометрический состав плохой, добавления пенистых или полимерных материалов бывает недостаточно; в таких случаях для достижения наилучшего эффекта добавляют также бентонит, глину и другие глиноформовочные материалы.

1. Стабилизация забоя в условиях вязких грунтовых слоев.

В вязких слоях грунта, таких как алевритовый песок, песчаный ил и др., шлак, срезанный режущим инструментом, как правило, имеет меньшую прочность, чем исходный слой, и обладает пластичностью и текучестью. Даже у почвы с большой адгезией, благодаря перемешиванию с помощью резцовой головки и шнекового транспортера, а также добавлению воды в грунтовый отсек и т. д., можно повысить текучесть. Что касается водонепроницаемости, то, поскольку коэффициент водопроницаемости вязкого грунта невысокий, водоотталкивающие свойства хорошие.

Шлак в бункере должен иметь определенное давление, чтобы конкурировать с давлением воды и грунта забоя. В соответствии со скоростью проходки, посредством регулировки крутящего момента и скорости вращения шнека, а также степени открытия заслонки шлакового грунта, достигается баланс между количеством грунта в забое и количеством отводимого грунта, обеспечивая стабилизацию забоя. Как правило, для контроля давления в забое используются датчики давления грунта, расположенные на внутренних стенках призабойного отсека. Однако стоит обратить внимание, что иногда вследствие плохой текучести, невозможно точно измерить давление грунта в призабойном отсеке.

Кроме того, если количество грунта в призабойном отсеке будет чрезмерным, вязкий грунт может начать уплотняться и застывать, что приведет к невозможности его экскавации и отвода, в таких случаях в грунт следует ввести добавки.

2. Стабилизация забоя в условиях песчаных грунтовых слоев.

Вследствие того, что сопротивление, угол внутреннего трения и сила трения песчанистных и гравийных грунтовых слоев высоки, сложно добиться хорошей текучести. Когда вынутый грунт заполняет призабойный отсек и полости шнека, крутящий момент резцовой головки и шнека, а также толкающее усилие гидроцилиндров щита увеличиваются, при этом произведение экскавации и отвод грунта не представляется возможным. Кроме того, коэффициент проницаемости в грунтовых слоях такого типа высокий, а эффект сжатия в призабойном отсеке и шнековом конвейере не может полностью остановить воду: при высоком давлении воды в забое, высока вероятность извержения материала через заслонку. Поэтому в слоях данного типа обычно используются такие методы, как введение добавок в забое или призабойном отсеке, установка дополнительных лопастей для принудительного перемешивания и другие способы придания шлаковому грунту текучести и водоотталкивающих свойств.

Как и в случае вязких грунтовых слоев, при помощи регулирования объема экскавации и количества отводимого грунта, можно добиться баланса между давлением воды и давлением грунта забоя, что способствует стабилизации забоя.

3. Три режима работы щита с грунтопригрузом.

Щит с грунтопригрузом обычно имеет три режима работы: открытый режим, режим локального давления воздуха и режим грунтопригруза (EPB). Как показано на рис. 3-4, Каждый из этих режимов проходки соответствует разным механизмам стабилизации забоя и геологическим условиям.


Рис.3-4. Три режима проходки щита с грунтопригрузом


а. Открытый тип.

Если забой достаточно стабилен, а грунтовых вод мало, щит с грунтопригрузом может использовать открытый режим работы, нет необходимости регулировать давление в призабойном отсеке, также можно гарантировать отсутствие деформации забоя и разрушения грунта в течение определенного отрезка времени. В этом режиме работы, срезаемый грунт сразу же отводится из призабойного отсека шнековым конвейером, поэтому призабойный отсек, в основном, находится в пустом состоянии, а резцовая головка и шнековый конвейер подвергаются относительно небольшому обратному воздействию крутящего момента. В таком случае, в основном при дроблении горных пород роликовыми резцами, проходка происходит с высокой скоростью, низким крутящим моментом и подходящей скоростью шнекового конвейера. Во время синхронного цементирования, бетонирующая суспензия может просачиваться в зазор между оболочкой щита и окружающим грунтовым массивом, и даже попадать в зону резцовой головки; избежать появления подобных ситуаций можно следующими способами: повышением вязкости бетонирующей суспензии до соответствующих значений, сокращением времени застывания суспензии, регулировкой давления бетонирующей суспензии, дополнительным цементированием несущей поверхности тюбингов и другими способами.

b. Полуоткрытый тип («режим локального воздушного давления»).

Скоростная проходка полуоткрытым способом применяется в случаях, когда забой обладает высокой степенью самостабильности, например, когда прилегающие грунтовые слои стабильны, но содержат грунтовые воды, либо когда большая часть прилегающего грунта стабильна, за исключением локальной потери давления и обрушения. При использовании данного режима временно останавливается шнек, закрывается шнековая заслонка, нижняя часть призабойного отсека заполняется шлаковым грунтом; в то же время в забой и призабойный отсек вводится необходимое количество присадочных материалов (таких как бентонит, глинистые материалы, присадки) и сжатый воздух, чтобы повысить водоотталкивающие свойства шлака в призабойном отсеке, а также под давлением в забой добавляются присадочные материалы для создания на поверхности забоя глинистой пленки. Посредством воздушного давления и глинистой пленки предотвращается затопление и обрушение туннеля, а также на малой скорости вращения в полости шнека образуется «грунтовая пробка», что позволяет безопасно и быстро пройти неблагоприятные участки грунта. Во время экскавации в призабойном отсеке остается определенное количество свободного места (шлаковый грунт заполняет призабойный отсек примерно на 2/3), что позволяет ввести в отсек сжатый воздух, который совместно со шлаковым грунтом будет выполнять функцию поддержки забоя и предотвращать проникновение подземных вод.

Помимо этого, данный тип также часто используется при работе в условиях мягких верхних и твердых нижних слоев. Во время работы, дробление твердых пород производится роликовыми резцами, а разрезание грунтовых слоев осуществляется с помощью зубчатых и скребковых резцов. При проходке в области дна реки, необходимо добавить пенообразователь, полимеры, бентонит и др., для улучшения водоотталкивающих свойств шлака и создания стабильного уравновешивающего давления в призабойном отсеке.

c. Режим грунтопригруза.

При экскавации в условиях плохой стабилизации грунта, либо мягких горных пород с высоким содержанием грунтовых вод, применяют режим грунтопригруза (EPB). В этом режиме, с помощью зубчатых и ножеобразных резцов происходит разрезание грунта и продвижение на низкой скорости с большим крутящим моментом, а также заполнение призабойного отсека шлаком, выходящего из резцовой головки. Шлак в призабойном отсеке принудительно перемешивается специальными лопастями, приваренными к обратной стороне резцовой головки и к различным зонам разделительной перегородки, при этом с помощью толкающего усилия гидроцилиндров, воздействующих на разделительную перегородку, создавая дополнительное давление глинистого грунта. Данное давление может измеряться датчиками давления грунта и контролироваться путем регулировки толкающего усилия, скорости продвижения и скорости шнека, обеспечивая равенство количества экскавируемого грунта и отводящегося шлака, а также уравновешенное состояние между давлением шлака в призабойном отсеке и давлением грунта и воды в забое.

4. Факторы, влияющие на стабилизацию забоя.

а. Давление грунта в призабойном отсеке, грунтового слоя и воды.

Щит должен поддерживать необходимое давление грунта в призабойном отсеке и непрерывно регулировать количество отводящегося грунта для того, чтобы сбалансировать давление грунта и давление воды в забое. Этот процесс можно разделить на следующие виды состояний: когда давление грунта в призабойном отсеке превышает давление грунта и давление воды в забое, поверхность земли поднимается; когда давление грунта в призабойном отсеке меньше давления грунта и давления воды в забое, поверхность земли оседает; когда давление грунта в призабойном отсеке совпадает с давлением грунта и давлением воды в забое, поверхность земли остается в покое.

b. Количество отводимого шнеком грунта.

Количество отводимого грунта обычно регулируется путем изменения скорости вращения шнека и степени открытия грунтовыводящей заслонки.

с. Текучесть глинистого грунта.

Для обеспечения стабильности забоя, срезанный грунт должен обладать текучестью и водоотталкивающими свойствами, а также в достаточной степени заполнять призабойный отсек.

5. Добавки для улучшения шлакового грунта.

Существуют следующие виды добавок, улучшающих шлаковый грунт при использовании щита с грунтопригрузом:

а. Глинистые материалы.

Для того чтобы шлаковый грунт обладал хорошей текучестью и водоотталкивающими свойствами, в его составе должно содержаться около 30% мелкодисперсных частиц. Если в вынутом грунте содержится недостаточное количество мелкодисперсных частиц, необходимо ввести бентонит, глину, прочие глиноформирующие материалы, для восполнения нехватки мелкодисперсных частиц. Концентрацию и необходимый объем введения глинистых материалов определяют исходя из гранулометрического состава, коэффициента неравномерности шлака и др.

b. Вспенивающий агент.

Для повышения текучести и водоотталкивающих свойств шлака, в забой или призабойный отсек добавляют специальную пену на основе особого вспенивающего агента. В песчанистых и гравийных грунтовых слоях текучесть шлака повышается за счет вспомогательной роли пузырьков пены; в вязких грунтовых слоях, пузырьки пены играют роль активной среды, препятствующей налипанию шлака на стенки призабойного отсека. С другой стороны, поскольку мелкие пузырьки пены вытесняют поровую воду во фракциях грунта, повышаются водоотталкивающие свойства. Количество вводимой пены, как и в случае с глинистыми материалами, определяется гранулометрическим составом, коэффициентом неравномерности шлака и др.

c. Вода.

Введение воды в шлаковый грунт большой вязкости может помочь увеличить текучесть и, вместе с тем, понизить его вязкость, предотвращая налипание шлака на резцовую головку и стенки призабойного отсека.

(4) Стабилизация забоя при использовании щита с гидропригрузом.

Существуют следующие особенности стабилизации забоя при использовании щита с гидропригрузом:

1. На поверхности забоя образуется труднопроницаемая глинистая пленка, которая позволяет давлению глинистой воды более эффективно воздействовать на поверхность забоя.

2. По мере проникновения глинистой воды в почву, ее мелкодисперсные частицы заполняют пустоты почвы, увеличивая прочность грунта.

3. При помощи регулировки скорости вращения подающего насоса, создается необходимое давление глинистой воды в призабойном отсеке, что позволяет контролировать давление грунта и воды в забое.

Значит, для обеспечения стабильности забоя необходимо установить оптимальный напор глинистой воды, и в то же время для достижения наибольшего эффекта этого напора нужно обращать внимание на ее качество. Среди важных качественных характеристик глинистой воды выделяют: плотность, коэффициент проницаемости, вязкость, особенности фильтрации, содержание песка и др.

1. Плотность глинистой воды.

Теоретически, увеличение плотности глинистой воды может увеличить ее ДНС (динамическое напряжение сдвига) и в то же время может усилить стабильность глинистой пленки. Как показывает практика, высокая плотность глинистой воды помогает создавать высококачественную глинистую пленку; лучше всего, когда плотность глинистой воды достигает плотности грунта забоя. Однако ее высокая плотность может привести к перегрузке шламового насоса и затруднительной переработке; а низкая плотность глинистой воды, несмотря на то, что помогает снизить нагрузку шламового насоса, из-за увеличения просачивания способствует замедлению образования глинистой пленки, что негативно сказывается на стабильности забоя. Следовательно, при определении плотности глинистой воды необходимо в полной мере учитывать структуру почвы, а также учитывать мощность оборудования при стабилизации забоя. Обычно плотность глинистой воды составляет 1.05 ~ 1.30 гр/см3.

2. Содержание песка и коэффициент проницаемости.

Как показано на рис. 3-5, Мюллер (Muller) и др., разделяют проницаемость глинистой воды на следующие три типа:

Тип 1-й: шламовая жидкость практически не просачивается, лишь формирует на поверхности глинистую пленку.

Тип 2-й: при больших порах в почве шламовая жидкость полностью проникает внутрь, не формируя на поверхности глинистую пленку.

Тип 3-й: является средним между типом 1-м и типом 2-м: шламовая жидкость частично проникает в почву, формируя при этом на поверхности глинистую пленку.

Тип 1-й в основном встречается в вязком грунте с малым коэффициентом проницаемости; тип 2-й – в песчано-гравийном грунте с большим коэффициентом проницаемости; тип 3-й – в песчаном грунте.


Рис. 3-5. Фильтрационное состояние глинистой воды в грунте забоя


В почвах с высокой водопроницаемостью из-за способности мелкодисперсных частиц заполнять поры грунта, скорость образования глинистой пленки тесно связана с максимальным размером частиц песка и количеством песка (вес песчинки / вес частиц глины). Как правило, имеет место следующая закономерность:

a. При коэффициенте проницаемости грунта равном k=5 × 10-3 м/с, если максимальный размер песчаной фракции достигает 0.84 мм, происходит проникновение в почву; только при максимальном размере песчаной фракции равном 2.0 мм за примерно 10 с, просачиваемость стабилизируется и происходит формирование глинистой пленки.

b. При увеличении содержания песчаных фракций S/c формирование глинистой пленки происходит все лучше и лучше. При k=5 × 10-3 м/с и ds >0.42 мм, для формирования глинистой пленки и уменьшения количества проникновения воды, достаточно значения S/c больше 0.1.

3. Вязкость глинистой воды.

Шламовая жидкость оптимальной вязкости имеет следующие эффекты воздействия:

а. Не допускает оседания песчаных и глинистых фракций на дне шламового призабойного отсека и обеспечивает стабилизацию забоя.

b. При повышении степени вязкости увеличивается сила сопротивления и предотвращаются потери глинистой воды.

с. Позволяет транспортировать экскаваруемый грунт в текучем виде, а шламовую жидкость разделять при помощи специального оборудования на глину и воду.

Во время работы на площадке значение вязкости Ваннера определяется количеством времени, затраченным на полное вытекание глинистой воды из воронкообразного контейнера для оценки его вязкости, получая подобие эквивалента вязкости. Значения вязкости Ваннера, часто используемые для стабилизации забоя, приведены в таблице 3-3.


Таблица 3-3. Величина вязкости Ваннера, требуемая для стабилизации забоя


4. Давление глинистой воды.

Несмотря на то, что при повышении давления глинистой воды увеличивается объем просачиваемости, его увеличение значительно меньше по сравнению с увеличением давления, таким образом щит с гидропригрузом посредством нагнетания давления глинистой воды повышает эффективность опорного давления, действующего на забой. Особенно при использовании высококачественной глинистой воды повышение ее давления может увеличить стабильность забоя. При определении давления глинистой воды нужно учитывать следующие факторы: давление воды забоя, давление грунта, а также резервное давление.

5. Скорость проходки.

В обычном режиме работы проходки щита с гидропригрузом режущий инструмент разрезает грунт не напрямую, а разрезает глинистую пленку, образовавшуюся на передней части резцовой головки. Сразу после разрезания образуется новый слой глинистой пленки. Поскольку скорость вращения резцовой головки щита является определенной величиной, а максимальная скорость продвижения щита ограничена, скорость проходки зависит только от глубины грунта и не имеет отношения к глинистой пленке. Однако, когда щит с гидропригрузом находится в ненормальных условиях работы, особенно когда качество глинистой воды и ее давление не соответствуют требованиям проекта, для образования глинистой пленки требуется много времени, что ограничивает скорость проходки. Время, требуемое для формирования глинистой пленки при использовании высококачественной глинистой воды, составляет 1 – 2 секунды.

2) Выбор модели щита

Основой для выбора щита являются инженерно-геологические и гидрогеологические условия, размер отдельных минеральных частиц (зерен) грунта, коэффициент проницаемости и давление грунтовых вод, а процесс выбора сочетается с практическими аспектами конкретного проекта (т. е. концепция «Три принципа и три практических аспекта») для обеспечения того, чтобы выбранный щит отвечал общим целям «стабильности (балансировки забоя), экскавации (фрезерование забоя грунта) и выгрузки (выгрузки грунта)».

(1) Выбор на основе размера частиц пласта

Взаимосвязь между типом щита и размером частиц пласта для проходческого щита с балансом давления грунта без улучшения остатков почвы и щитов с балансом глинистой воды без дополнительных компонентов показана на рис. 3-6.


Рис. 3-6. Кривая зависимости размера частиц в пласте от типа щита


Как видно из рис. 3-6, проходческий щит с балансом давления грунта без улучшения остатков почвы наиболее подходит для диапазона размеров частиц менее 0.2 мм (синяя область) и приблизительно до 1.5 мм (серая область). Диапазон размеров частиц для щитов с балансом глинистой воды начинается от 0.01 мм до 80 мм (желтая область).

Щит с балансом давления грунта в основном подходит для строительства в глинистых слоях почвы, таких как мел, меловая глина, кремнистый мел, меловой песок и т. д. При рытье в глинистых слоях почвы, грунт, срезанный фрезой, попадает в отсек для грунта и затем выводится шнековой машиной, в шнековой машине образуется градиент давления для поддержания стабильного давления в отсеке для грунта.

В сущности, мелкозернистые остатки грунта легко образуют водонепроницаемые пластомеры, которые могут легко заполнить каждую часть грунтового отсека и сформировать эффект почвенной пробки в спиральной машине, которая может создать давление в грунтовом отсеке, чтобы сбалансировать давление почвы и воды на поверхности забоя.

Вообще говоря, когда общее количество порошковых и глинистых частиц в почве достигает более 40%, обычно целесообразно использовать щит с балансом давления грунта; в противном случае более подходящим является щит с балансом глинистой воды; абсолютный размер частиц порошка обычно определяется как 0.075 мм.

В частности, следует отметить, что при выборе щита на основе размера зерна пласта необходимо учитывать конкретные условия проекта. Хотя размер зерна пласта отличается для щитов с балансом давления грунта и щитов с балансом глинистой воды, как показано на рис. 3-7, щит баланса давления грунта подходит для глинистых, иловых, песчаных пластов с размером зерна 1.5 мм или менее без улучшения остатков грунта. Подходящий диапазон размера частиц пласта составляет от 0.01 до 0.80 мм.

При отсутствии добавок подходящий диапазон размеров грунта для щитов с балансом глинистой воды составляет от 0.01 до 0.80 мм для ила, песка, гравия, гальки и других пластов. Однако, если щит с балансом давления грунта модифицирован или в щите с балансом глинистой воды используютсясоответствующие добавки, то данные щиты подходят для одного и того же диапазона.

(2) Выбор на основе коэффициента проницаемости

Как показано на рис. 3-8, согласно европейскому и американскому опыту, когда коэффициент проницаемости пласта меньше 10-7 м/с, следует использовать щит с балансом давления грунта. Когда коэффициент проницаемости пласта больше 10-4 м/с, следует использовать щиты с балансом глинистой воды; когда коэффициент проницаемости находится между 10-7~10-4 м/с, то можно использовать как щиты с балансом глинистой воды, так и щит с балансом давления грунта.

Согласно японскому опыту, когда содержание глины в грунте составляет менее 10%, трудно сформировать глинистую пленку и поверхность забоя склонна к обрушению, поэтому не рекомендуется использовать щит с балансом глинистой воды.

(3) Выбор на основе давления грунтовых вод

Размер частиц пласта и коэффициент проницаемости пласта являются более ограничивающими для щитов с балансом давления грунта, чем для щитов с балансом глинистой воды. Основополагающей причиной этого является то, что выравнивающей средой для давления в щите с балансом давления грунта является шлак, а способом выгрузки шлака – шнековый механизм. Если размер частиц шлака слишком велик, а коэффициент проницаемости слишком высок, возникают два основных последствия: во-первых, потеря воды с поверхности забоя и невозможность установления выравнивания давления; во-вторых, шнековый механизм не может правильно выгружать шлак.

В щите с балансом давления грунта для выгрузки шлака используется винтовой конвейер (рис. 3-9). Давление земли постепенно ослабляется грунтовой камерой и винтовым конвейером и должно быть снижено до атмосферного давления, прежде чем оно достигнет шлакового окна винтового конвейера, иначе произойдет фонтанирование. Щит с балансом глинистой воды имеет глинистую пленку для предотвращения потери воды из пласта и шламовый насос для поддержания шлака под давлением, поэтому щит с балансом глинистой воды имеет преимущества, которых нет у щита с балансом давления грунта для высокого давления воды и высокопроницаемых пластов.


Рис. 3-7. Кривая зависимости типа щита от размера зерна пласта (фактическая)


Рис. 3-8. Взаимосвязь между типом щита и коэффициентом проницаемости пласта


Рис. 3-9. Схематическое изображение снижения давления в щите с балансом давления грунта


В общем, когда давление грунтовых вод меньше 0.3 МПа, предпочтительны щиты с балансом давления грунта; когда давление грунтовых вод больше 0.3 МПа, предпочтительны щиты с балансом глинистой воды.

В частности, следует отметить, что при выборе щита на основе давления грунтовых вод необходимо учитывать конкретные инженерно-геологические условия. Во-первых, когда давление воды превышает 0.3 МПа, следует увеличить длину винтового конвейера или использовать вторичный винтовой конвейер, если по геологическим причинам требуется щит с балансом давления на грунт. Во-вторых, когда эффект улучшения почвы не может удовлетворить эффект закупорки почвы и когда есть обильные грунтовые воды, даже если давление грунтовых вод менее 0.3 МПа, щит с балансом давления на грунт не подходит для использования.

При проведении строительства щитовых туннелей в этом типе пласта, хотя давление подземных вод составляет менее 0.3 МПа, если используется под пластом щит с балансом давления на грунт, шлак и вода находятся в раздельном состоянии и не могут перемещаться по шнековому конвейеру. Шлак в винтовом конвейере не может блокировать декомпрессию, не может сформировать эффект закупорки почвы, даже если использовать двойной винтовой конвейер. Поскольку как только люк винтовой машины откроется для выгрузки шлака, под действием давления воды винтовой конвейер будет вибрировать, в результате чего давление на поверхности забоя не может быть стабилизировано. Если используется насос для удержания давления, хотя давление на поверхности забоя может быть стабилизировано, шлак из шнековой машины содержит большое количество крупнозернистых камней, с которыми не может справиться насос для удержания давления, и шлак не может быть удален.

3) Краткий итог по выбору щита

Щит должен быть выбран на основе устойчивости поверхности забоя, инженерной и гидрологической геологии, размера зерен пластов, коэффициента проницаемости и давления грунтовых вод, а также с учетом практических особенностей конкретного проекта, чтобы гарантировать, что выбранный щит отвечает общим целям «стабильности (балансировки забоя), экскавации (фрезерование забоя грунта) и выгрузки (выгрузки грунта)».

В соответствующих пластах эффективны как щиты c балансом давления на грунт, так и щиты с балансом глинистой воды.

Преимуществами щита с балансом давления грунта являются высокая производительность выгрузки шлака, интуитивный баланс давления в грунтовом отсеке, относительно простое оборудование и эксплуатация; недостатком является то, что он плохо приспособлен к высокому давлению воды, и с его помощью трудно поддерживать стабильность неустойчивых поверхностей забоя и предотвращать потерю воды в высокопроницаемых пластах.

Щит с балансом глинистой воды имеет очевидные преимущества перед щитом с балансом давления грунта в контроле оседания и предотвращении потери воды в пластах, и может работать в пластах с высоким давлением воды и высокой проницаемостью. Недостатки заключаются в том, что он легко образует глинистую корку в глинистой горной породе, легко засоряется и трудно отделяется, легко срывается и разгружается в пластах с большим количеством крупногабаритных объектов, и легко ограничивается мощностью и сроком службы камнедробилки. Кроме того, по сравнению со щитом с балансом давления земли, щит с балансом глинистой воды имеет более высокую стоимость закупки, требования к площадке и уровень строительства.

Однако конкретный выбор должен быть сделан в соответствии с конкретными условиями проекта, и противоречие между теоретической рациональностью и практической возможностью должно быть разрешено. Он должен основываться на размере и распределении размеров грунта, коэффициенте проникновения грунта, давлении грунтовых вод, диаметре отверстия, стабильности поверхности забоя, глубине, стоимости, продолжительности, месте и т. д.

Несмотря на то, что некоторые крупные частицы могут быть отделены от отработанного шлама с помощью просеивания, вихревого потока и седиментации, а отработанный шлам может транспортироваться автотранспортными средствами и лодками, мелкие частицы грунта, находящиеся во взвешенном или полувзвешенном состоянии в шламе, не могут быть полностью отделены, и эти материалы не могут быть свободно утилизированы, что создает основные трудности при использовании щита с балансом глинистой воды.

Снижение загрязнения для защиты окружающей среды является очень важным вопросом, стоящим перед выбором щита с балансом глинистой воды, и необходимо решить, как предотвратить сброс этих шламов в водные объекты: реки, озера и моря, чтобы не вызвать масштабное и серьезное загрязнение. В той мере, в какой утилизируемый шлам может быть тщательно обработан как твердые материалы для транспортировки, это также возможно, и есть много успешных примеров как в стране, так и за рубежом, но это нелегко сделать, потому что: во-первых, оборудование для обработки является дорогостоящим и увеличивает инвестиции в проект; во-вторых, участок, используемый для установки этого оборудования, должен быть больше; и в-третьих, время обработки больше.

Участки щитового строительства обычно длинные, и сложность инженерной геологии в основном отражается в изменчивости свойств окружающих пород и инженерно-геологических характеристик. На участке строительства щита или на участке подряда на строительство щита условия строительства некоторых участков подходят для щита с балансом давления грунта, но некоторые участки подходят для щита с балансом глинистой воды. Выбор щита должен быть обдуманным, а наилучший вариант должен быть выбран после анализа рисков различных вариантов.

В соответствии с механизмом балансировки забоя котлована, использование щитов с балансом глинистой воды более эффективно, чем щиты с балансом давления грунта, с точки зрения поддержания стабильности забоя котлована и контроля осадки грунта, особенно при работе под водоемами, под зданиями или сооружениями, а также в мягких и твердых пластах. В этих особых условиях безопасность строительного процесса является чрезвычайно важным выбором при выборе щита, а использование грязевых и водяных щитов может также снизить строительные риски, вызванные большими колебаниями геологии.

В случаях, когда ни щиты с балансом давления грунта, ни щиты с балансом глинистой воды не могут удовлетворить требованиям устойчивости поверхности забоя, следует рассмотреть возможность применения многорежимных щитов.


3.2.4. Расчет нагрузки на щит

Расчет механических параметров для щитовой проходки является очень сложным вопросом, на который влияет целый ряд факторов, таких как геологические факторы, методы улучшения грунта и параметры проходки. В процессе выбора щита очень важен расчет основных технических параметров, таких как крутящий момент фрезы и тяга двигательной установки.

1) Давление грунта

Давление грунта является одной из важных нагрузок, которые необходимо учитывать при проектировании оболочки щита, при этом необходимо учитывать как статическое, так и динамическое давление грунта. В процессе выемки грунта возникает очень сложное динамическое давление грунта из-за выемки и опоры, в то же время существуют различные степени перекопа (избыточной экскавации) и криволинейные участки забоя. Давление грунта, действующее на оболочку щита, является сложным и трудно поддается точному расчету, но расчеты могут быть выполнены обычным способом. Влияние воды должно учитываться следующим образом в зависимости от условий окружающей породы, то есть почва и вода должны быть разделены или вода должна рассчитываться как часть почвы.

Вертикальное давление грунта можно рассматривать как равномерную нагрузку, действующую на верхнюю часть оболочки щита. Величина вертикального давления грунта связана с толщиной обделки туннеля, формой поперечного сечения туннеля, внешним диаметром и состоянием породы. Горизонтальное давление грунта действует на обе стороны оболочки щита и может рассматриваться как распределенная нагрузка, действующая горизонтально. Величина горизонтального давления грунта рассчитывается на основе коэффициентов вертикального давления грунта и бокового давления грунта. Устойчивость фундамента к деформации может не учитываться при проектировании оболочки щита.

2) Гидравлическое давление

Уровень грунтовых вод следует определять с учетом его изменений во время строительства при проектировании щитового корпуса. Гидравлическое давление в вертикальном направлении можно рассматривать как равномерно распределенную нагрузку. Давление воды, действующее на верхнюю часть щита, равно гидростатическому давлению, действующему на его вершину; давление воды, действующее на нижнюю часть щита, равно гидростатическому давлению, действующему в самой нижней точке щита. Гидравлическое давление в горизонтальном направлении можно рассматривать как распределенную нагрузку. Величина давления воды в горизонтальном направлении равна вертикальному гидростатическому давлению в соответствующей точке.

3) Собственный вес щита В дополнение к собственному весу основного корпуса щита при проектировании оболочки щита следует также учитывать силы реакции грунта, создаваемые собственным весом основного корпуса щита. Сила реакции на грунт, создаваемая собственным весом корпуса щита, может быть рассчитана по формуле 3-1:



(3-1),

где: P g – сила реакции грунта, создаваемая собственным весом корпуса щита (кH/м2);

W – сила тяжести корпуса щита (кН);

D – внешний диаметр корпуса щита (м);

L – длина корпуса щита (м).

Собственный вес – это вертикальная нагрузка, распределенная вдоль оси корпуса щита.

4) Нагрузка вскрышных пород

Нагрузка вскрышных пород – это напряжение на почву, вызванное нагрузкой, действующей на поверхность земли или силой реакции фундамента здания и т. д. Влияние нагрузки вскрышных пород на конструкцию щитовой оболочки уменьшается с увеличением глубины. Можно предположить, что влияние нагрузки от вскрышных пород на давление грунта, действующее на оболочку щита, также уменьшается по мере увеличения расстояния от точки приложения нагрузки.

Влияние нагрузки от вскрышных пород на давление на грунт может меняться в зависимости от величины нагрузки, формы фундамента, толщины вскрышных пород от нижней границы фундамента здания и характеристик грунта, что затрудняет точное определение. Влияние нагрузки вскрышных пород на щит может быть рассчитано по формуле Буссинеска в механике упругости или численно с использованием метода конечных элементов.

5) Переменная нагрузка

Когда щитовая машина прокладывает туннель или корректирует направление в криволинейной части туннеля, щитовая оболочка подвергается сопротивлению фундамента со стороны окружающей породы в равновесии с эксцентриковой тягой, что называется переменной нагрузкой. Величина и распределение переменной нагрузки зависят от условий, но максимальное значение обычно имеет сопротивление фундамента, когда пассивное давление грунта приложено к половине щитовой оболочки или когда силовой цилиндр используется для продвижения только половины щитовой оболочки. Диаграмма переменной нагрузки показана на рис. 3-10. Пример расчета переменной нагрузки показан на рис. 3-11. Для щита с балансом давления грунта давление перед забоем является давлением грунта; для щита с балансом глинистой воды с высокой концентрацией глинистого раствора давление перед забоем – это давление глинистого раствора. Для щита с балансом глинистой воды давлением глинистого раствора перед забоем является давление глинистого раствора (пены) и давление грунта. Для щитов с ручной выемкой или щитов закрытого типа давление перед забоем – это силовой гидравлический цилиндр подпорной пластины на решетке. Противодействующей силой является гидравлический цилиндр фиксатора на решетке.

Давление перед забоем – это нагрузка, действующая на стенку земляной камеры (барокамера) (поперечное уплотнение между срезным кольцом и опорным кольцом), а также на арматурные балки опорного кольца, колонны, рабочей платформы и т. д.

Тяга гидроцилиндров, необходимая для поддержания устойчивости поверхности забоя, передается через стенки грунтового отсека рабочей среде (воздух, грунтовый раствор, грунт) внутри отсека. Максимальное избыточное давление рабочей среды в грунтовом отсеке обычно составляет 3 × 105 Па, и может быть больше 3 × 105 Па, если существуют специальные требования, но когда ремонтный персонал должен проводить работы с газом под давлением в грунтовом отсеке, следует использовать подходящее значение избыточного давления согласно соответствующим требованиям. Расчетная нагрузка перегородки под давлением отражена в таблице 3-4.


Рис. 3-10. Диаграмма нагрузки при общем методе расчета


Рис.3-11. Пример расчета переменных нагрузок


p1 – вертикальное давление на грунт;

p g – сила реакции собственного веса щита;

Q 1 – горизонтальное давление на грунт, равнодействующее гидростатическое давление в верхней части туннеля;

Q 2 – горизонтальное давление на грунт, равнодействующее гидростатическое давление в нижней части туннеля

q – переменная нагрузка;

q1 , q2 – переменная нагрузка на обоих концах рассчитываемой детали, равнодействующее гидростатическое давление;

Примечание: q = (q1 + q2 ) / 2.


Таблица 3-4. Расчетные нагрузки для напорных земляных перемычек


3.2.5. Проектирование основных параметров

1) Внешний диаметр оболочки щита D

Наружный диаметр оболочки щита равен наружному диаметру основного корпуса щитового блока, за исключением выступающих частей (например, инструментов для избыточной экскавации, трубопровод для послестенной цементации и т. д.). Диапазон экскавации инструментов для избыточной экскавации показан на рис. 3-12.


Рис. 3-12. Диапазон экскавации инструментов для избыточной экскавации


Наружный диаметр оболочки щита (D) должен быть рассчитан на основе наружного диаметра кольца футерованного тюбинга (D0), толщины хвостовой пластины щита (t) и зазора (b) между внутренней поверхностью стенки хвостовой пластины щита и внешней поверхностью стенки кольца футерованного тюбинга, то есть:


(3-2),


Минимальное допустимое отклонение, необходимое для контроля ориентации при прокладке туннелей в изогнутых щитовых конструкциях, можно рассчитать по следующему уравнению:


(3-3)


где: δ – см. рис. 3-13. Значение отклонения δ может быть рассчитано по следующему уравнению:


(3-4),


Рис. 3-13. Схематическое изображение отклонения δ: R – радиус кривой на осевой линии изогнутого туннеля; β – угол врезания кольца облицовки изогнутого туннеля в хвостовую пластину щита; R + Д0/2 – внешний диаметр кольца футерованного тюбинга, образующий изогнутый туннель; R-Д0/2 – внутренний диаметр кольца футерованного тюбинга, образующий изогнутый туннель; l – длина изогнутого кольца футерованного тюбинга, врезающегося в пластину хвостовой части оболочки щита


Если толщина крепежной пластины уплотнительного устройства между внутренней стенкой пластины оболочки хвостовика щита и внешней поверхностью стенки кольца вкладыша равна b2, то b = b 1 + b2.Для значения b в основном используются фактические данные от 20 до 45 мм, или D0/125. Для щитовых корпусов с композитными пластами или щитовых корпусов для туннелей с малым радиусом кривой (R < 250 м) и шириной трубы B ≤ 1.5 м, целесообразно использовать большее значение b.

2) Диаметр щитовой выемки

Следует учитывать диаметр выемки фрезы, чтобы обеспечить правильный диаметр выемки даже после износа наружного кольца фрезы. При строительстве на мягком грунте диаметр выемки режущей пластины обычно больше внешнего диаметра переднего щита на 0~10 мм; при строительстве на песчано-галечном грунте или твердом скальном грунте износ режущей пластины более серьезен, и диаметр выемки режущей пластины обычно должен быть больше внешнего диаметра переднего щита на 30 мм.

3) Общая длина корпуса щита (L)

Общая длина корпуса щита L, для щитов с уравновешенным давлением земли – это общая длина от лопасти передней стороны режущего инструмента до конца винтового конвейера, для щитов с балансом глинистой воды – это общая длина от лопасти передней стороны режущего инструмента до торцевой поверхности щита.

Длина корпуса щита LM равна сумме длины срезного кольца, опорного кольца и хвостовой части щита.

Общая длина корпуса щита определяется исходя из инженерно-геологических и гидрогеологических условий пластов, условий прокладки туннеля (включая диаметр поперечного сечения, максимальный продольный уклон и минимальный радиус кривой), длины центрального гибочного устройства (длина опорного кольца должна учитывать длину центрального гибочного устройства), а также формы и ширины конструкции тюбингов.

Отношение общей длины L корпуса щита к наружному диаметру D оболочки щита обычно называют коэффициентом чувствительности щита; величина отношения L/D может отражать способность управления положением корпуса щита при проходке криволинейного туннеля.

Взаимосвязь между L и D показана на рис. 3-14. Из рисунка видно, что когда внешний диаметр D оболочки корпуса щита < 7 м, L/D ≥ 1, то чем меньше внешний диаметр D оболочки щита, тем больше отношение L/D. Когда внешний диаметр D оболочки щита корпуса щита > 7 м, L/D < 1, то чем больше внешний диаметр D оболочки щита, тем меньше отношение L/D. Как правило, отношение L/D составляет не менее 0.4. Отношение L/D группы щитов с композитными пластами обычно немного больше, чем у щитов с мягким грунтом.

Длина срезного кольца LH должна определяться в соответствии с инженерно-геологическими и гидрогеологическими условиями вынимаемых пластов. Для щитов из композитных пластов пространство срезного кольца должно быть достаточным для формирования камеры с глинистой водой для щитов с балансом давлением грунта или щитов с балансом глинистой воды, поэтому объем грунта должен определяться в зависимости от его характеристик (форма, размер частиц) и скорости копания, а затем длина срезного кольца LH должна определяться в зависимости от объема камеры с глинистой водой. Для щита с ручной выемкой основной функцией срезного кольца является обеспечение безопасности оператора в пространстве срезного кольца, поэтому LH и форма конструкции зависят от условий грунта. Если условия грунта нестабильны, на вершине срезного кольца, на верхнем карнизе, может быть установлено расширение (верхний карниз может иметь телескопическую форму).


Рис. 3-14. Соотношение между общей длиной L корпуса щита и внешним диаметром D оболочки щита


Для щитов, выкапывающих вручную, длина опорного кольца LG определяется длиной силового гидроцилиндра и требуемым ходом штока поршня, то есть связана с шириной кольца футеровочного тюбинга. Для щитов из композитных пластов LG не только учитывает длину силового гидроцилиндра и требуемый ход штока поршня, но также учитывает требования к осевому положению установки такого оборудования, как главный подшипник лопасти, приводное устройство, центральное гибочное устройство, шлюз и шлакоразгрузчик шнекового типа.

Длина щитового хвоста LT зависит от ширины кольца футерованного тюбинга и формы конструкции. LT должен вмещать от 2 до 2.5 колец футерованного тюбинга, чтобы в случае повреждения части кольца футерованного тюбинга его можно было отремонтировать в третьем кольце. Кроме того, при большой глубине заложения и высоком давлении воды хвостовая часть щита должна иметь достаточную длину для установки уплотнения хвостовой части щита, чтобы обеспечить хорошую водонепроницаемость на поверхности вырытого туннеля.


(3-5),


где: LJ – длина упорного устройства на конце штока силового гидроцилиндра (мм);

Ls – ширина футерованного тюбинга, покрытого хвостовой частью щита (мм);

LP – длина установки хвостового уплотнения щита (мм);

C – допустимое отклонение при установке футерованного тюбинга; обычно C = 100 – 150 мм (для футеровочных колец с аксиально вставленными уплотнительными блоками длина может быть увеличена в зависимости от угла вставки аксиально вставленных уплотнительных блоков);

C' – другие допустимые отклонения (мм).

4) Сила тяжести щита W

Сила тяжести щита – это сумма тяжести всего оборудования, установленного в корпусе щита, отвала, силового гидроцилиндра, шарнирного гидроцилиндра, трубоукладчика, кабины оператора, винтового конвейера (камнедробилки и линии подачи и выгрузки глины для щитов с балансом глинистой воды) и т. д. В общем, взаимосвязь между силой тяжести щита (W) и диаметром щита (D) выглядит следующим образом:

(1) Для щитов, выкопанных вручную или полумеханических щитов:


(3-6),


(2) Для механических щитов:


(3-7),


(3) Для щитов с балансом глинистой воды:


(3-8),


(4) Для щитов с балансом давления грунта:



(3-9),


где: D – внешний диаметр щита (м);

W – сила тяжести основного каркаса щита (кН).

5) Движущая сила щита Fe

При проектировании движительной установки (пропульсивной установки) щита рассматриваются следующие основные элементы сопротивления:

Сопротивление оболочки щита окружающим пластам во время продвижения щита – F1, сопротивление продвижению лопастной панели – F2, сопротивление трению между тюбингом и хвостовой частью щита – F3, сопротивление проникновению срезного кольца в пласт – F4, сопротивление повороту (конструкция кривой и отклонение) – F5, буксировочное сопротивление соответствующего прицепа после буксировки – F6. Тяга должна быть с достаточным запасом, общая тяга обычно в 1.5 – 2 раза больше общего сопротивления.



(3-10),


где: F e– суммарная тяга щитового оборудования (кН);

A – коэффициент запаса прочности, обычно от 1.5 до 2:

F d – общее сопротивление продвижению щита, Fd = F1 + F2 + F3 + F4 + F5 + F6.

Иногда Fd также можно оценить по следующей формуле:



(3-11),


где: D – внешний диаметр щита (м).

P J– эмпирическая тяга на единицу вынимаемой поверхности, то есть удельная тяга; обычно 700 – 1100 кН·м2 для открытых щитов и 1000 – 1500 кН·м2 для щитов с закрытым забоем.

(1) Периферийная сила реакции во время продвижения щита F1

1. Для песчаной почвы:


(3-12),


где: F1 – сила периферийной реакции при продвижении щита, то есть сопротивление трения между корпусом щита и окружающими пластами (кН).

D – внешний диаметр щита (м);

L – общая длина щита (м);

P e – сила вертикального давления грунта, действующая на верхнюю часть щита (кПа);

K – коэффициент статического давления грунта на забой;

γ – плавающий вес грунта на забое (кН·м3);


μ1 – коэффициент трения между пластом и оболочкой щита; обычно принимается равным μ1 = 1/2 tanφ, где φ – угол трения в почве;

W – сила тяжести основного каркаса щита (кН).

Его также можно оценить по следующей формуле:



(3-13),


где F1 – периферийная сила реакции во время продвижения щита (кН);

μ1 – коэффициент трения между пластами и корпусом щита;

D – внешний диаметр щита (м);

L – общая длина корпуса щита (м);

P m – среднее давление грунта, действующее на щит (кПа);

W – Сила тяжести основного каркаса щита (кН).

2. Для глинистых почв


(3-14),


где: D – внешний диаметр щита (м);

L – общая длина корпуса щита (м);

C – связность грунта на забое (кПа).

(2) Сопротивление продвижению режущей пластины F2

Для ручных и полумеханических щитов сопротивление движению в основном представляет собой силу реакции опоры на поверхности забоя, а для механических и закрытых щитов – это сопротивление движению, действующее на резец, и давление в почвенном отсеке, соответственно, рассчитываемое по следующему уравнению:



(3-15),


где F2 – сопротивление продвижению лопастной панели (кН);


D – внешний диаметр щита (м);

P f – давление перед выемкой грунта; щит с балансом глинистой воды – расчетное давление глинистой воды в грунтовом отсеке; щит с балансом давления грунта – расчетное давление грунта в грунтовом отсеке (кПа).

(3) Сопротивление трению между тюбингом и хвостовой частью щита F3



(3-16),


где: F3 – сопротивление трению между тюбингом и хвостовой частью щита (кН);

n 1 – количество колец тюбингов в хвосте щита;

W s – сила тяжести тюбингового кольца (кН);

μ2 – коэффициент трения между щеткой и тюбингом (обычно от 0.3 до 0.5);

D s – внешний диаметр тюбинга (м);

b – длина контакта между каждой щеткой и тюбингом (м);

P t – давление смазки внутри щетки (кПа);

n 2 – количество слоев хвостовой щетки щита.

(4) Сопротивление проникновению срезного кольца в пласт F4

1. Для песчаных почв:



(3-17),


где: F4 – сопротивление проникновению срезного кольца в пласт (кН);


D – внешний диаметр переднего щита (м);

D i – внутренний диаметр переднего щита (м);

P 3 – среднее давление грунта при установке срезного кольца(кПа);

t – глубина внедрения срезного кольца в пласт (м);

K p – коэффициент пассивного давления на грунт;

P m – среднее давление грунта, действующее на щит (кПа).

2. Для глинистых почв:


(3-18),


где: С – связность грунта у забоя (кПа).

Остальные показатели имеют то же значение, что и раньше.

(5) Сопротивление повороту F5



(3-19),


где: F 5– сопротивление повороту, также известное как переменное сопротивление (кН);

R – давление сопротивления грунта (пассивное давление грунта) (кПа);

S – проектная площадь плиты сопротивления в направлении выемки (м2).

Сопротивление повороту существует только при строительстве кривой. Поскольку расчет проектируемой площади сопротивления в направлении выемки сложен, сопротивление повороту обычно не рассчитывается, но при определении общей тяги следует учитывать такие факторы, как подъем, строительство кривой, прогиб при строительстве щита, поэтому необходимо делать поправки на показатели.

(6) Буксировочное сопротивление соответствующего прицепа после буксировки F6



(3-20),


где: F6 – буксировочное сопротивление соответствующего прицепа после буксировки;

μ3 – коэффициент трения между задним опорным прицепом и дорожкой качения;

W ъ – общая сила тяжести задней части прицепа и оборудования на прицепе (кН).

6) Крутящий момент фрезы


Расчет крутящего момента фрезы сложен. Крутящий момент при погружении фрезы в грунт обычно состоит из сопротивления почвы резанию (используется для преодоления сопротивления почвы резанию), сопротивления вращению фрезы (используется для преодоления сопротивления трения с почвой), реакции от осевой нагрузки на фрезу, трения от уплотнительного устройства, трения на передней поверхности фрезы, трения за фрезой, сдвига при открывании фрезы и отталкивания при давлении почвы.

T 1 – расчетная составляющая крутящего момента режущего инструмента включает в себя крутящий момент режущего инструмента ; T2 – собственный вес фрезы создает крутящий момент подшипника; T3 – крутящий момент подшипника из-за осевой нагрузки на фрезу; T4 – момент трения уплотнительного устройства; T5 – фрикционный крутящий момент на передней поверхности фрезы; T6 – фрикционный крутящий момент на окружности фрезы; T7 – фрикционный крутящий момент на задней поверхности фрезы; T8 – момент срезания паза отверстия фрезы. Расчетный крутящий момент фрезы T является суммой вышеуказанных компонентов. Коэффициент запаса крутящего момента обычно составляет 1.5 – 2. В то же время, согласно зарубежному опыту проектирования щитов, крутящий момент фрезы может быть оценен по следующей формуле:



(3-21),


где: K α – коэффициент крутящего момента относительно диаметра лопасти; в общем случае K α = от 14 до 23 для щитов с балансом давления грунта и Kα = от 9 до 18 для щитов с балансом глинистой воды.

Расчет каждого компонента крутящего момента выполняется следующим образом:

(1) Крутящий момент резания фрезы T1:



(3-22),


где: T1 – крутящий момент резания фрезы (кН∙м);

n – скорость вращения фрезерной головки (об/мин);

qu– прочность на сжатие срезаемого грунта (кПа);

h max – проникновение, то есть глубина реза за один оборот фрезы (м); hmax= V / n, V – скорость движения (м/ч);

D – диаметр диска фрезы (м).

(2) Собственный вес фрезы создает крутящий момент подшипника T2



(3-23),


где: W c – вес резца (кН);

R 1 – радиус качения коренного подшипника (м);

μ g – коэффициент трения качения подшипника.

(3) Крутящий момент подшипника из-за осевой нагрузки на фрезу T3:



(3-24),


где: P t – осевая нагрузка на фрезу;

Остальные показатели имеют то же значение, что и раньше.



(3-25),


где: α – скорость, при которой клапан не открывается, α = 1 – As, где As – скорость, при которой клапан открывается;

D – диаметр диска фрезы (м);

P d – активное давление грунта на переднюю сторону щита (кПа).

(4) Момент трения уплотнительного устройства T4:



(3-26),


где: μm– коэффициент трения между уплотнением коренного подшипника и сталью, обычно принимается равным μm= 0.2;

F m – тяга уплотнения (кПа);

n 1 – количество внутренних уплотнений;


n 2 – количество внешних уплотнений;

R m1 – радиус внутреннего уплотнения (м);

R m2 – радиус наружного уплотнения (м).

(5) Фрикционный крутящий момент на передней поверхности фрезы T5:



(3-27),


где: α – скорость, при которой клапан не открывается;

μ1 – коэффициент трения между почвой и фрезой;

R c – радиус резца фрезы (м);

P d – активное давление грунта на переднюю сторону щита (кПа).

(6) Фрикционный крутящий момент на окружности фрезы T6:



(3-28),


где: R c – радиус резца фрезы (м);

B – толщина периметра фрезы (м);

P z – среднее давление грунта по окружности фрезы (кПа);

μ1 – коэффициент трения между почвой ифрезой.

(7) Фрикционный крутящий момент на задней поверхности фрезы T7:

Фрикционный крутящий момент на задней поверхности фрезы T7 создается давлением грунта Pw в грунтовом отсеке и рассчитывается как:



(3-29),


где: α – скорость, при которой клапан не открывается;

μ1 – коэффициент трения между почвой и фрезой;

R c – радиус резца фрезы (м);

P w – заданное давление грунта в грунтовой камере (кПа).

(8) Момент срезания паза отверстия фрезы T8:



(3-30),


где: τ – сила сдвига фрезы;

R c – радиус резца фрезы (м);

A 8 – скорость открывания фрезы.



(3-31),


где: C – связность грунта у забоя (кПа);

φ – угол внутреннего трения грунта в камере; в случае щита с балансом глинистой воды это смесь ила и глинистой воды, угол внутреннего трения обычно принимается равным φ = 5°.

P w – установленное давление грунта (кПа) в грунтовом отсеке, или давление глинистой воды в случае щита с балансом глинистой воды.


7) Мощность главного привода W0



(3-32),


где: W0 – мощность системы главного привода (кВт);

A w – коэффициент запаса мощности, обычно от 1.2 до 1.5;

T – номинальный крутящий момент фрезы (кН∙м);

ω – угловая скорость фрезы, ω = 2πn/60, n – скорость вращения фрезерной головки (об/мин);

η – эффективность системы главного привода.

8) КПД двигательной установки Wf



(3-33),


где: Wf– мощность двигательной установки (кВт);

A w– коэффициент запаса мощности, обычно от 1. 2 до 1. 5;

F – максимальная тяга (кН);

V – максимальная скорость движения (м/ч);

η w – КПД двигательной установки; ηw = ηpmηpvηc, ηpm – механический КПД двигательного насоса, ηpv – объемный КПД двигательного насоса, ηc – КПД муфты сцепления валов.

9) Возможность одновременного использования системы цементирования

(1) Теоретический объем цементации на одно кольцо тюбинга Q



(3-34),


где: Q – строительная пустота на кольцо тюбинга, то есть теоретический объем цементации на кольцо тюбинга (м3);

D – диаметр забоя (м);

D s – внешний диаметр тюбинга ;

L – ширина тюбинга (м).

(2) Минимальное время продвижения каждого цикла t



(3-35),


где: L – длина пласта (м);

V – максимальная скорость движения (м/ч).

(3) Теоретическая мощность цементации t



(3-36),


где: q – теоретическая производительность синхронной цементационной системы (м3/ч);


D – диаметр забоя(м);

D s – внешний диаметр трубного листа (м);

V – максимальная скорость движения (м/ч).

(4) Номинальная производительность цементирования

Номинальная производительность синхронного цементировочного насоса q p учитывает скорость закачки пласта λ и производительность цементировочного насоса η и определяется по формуле:


(3-37),


где: λ – коэффициент стратиграфической закачки, варьируется в зависимости от пласта, обычно 1.5 ~ 1.8;

D – диаметр забоя (м);

D s – внешний диаметр тюбинга (м);

V – максимальная скорость движения (м/ч);

η – производительность шламового насоса.

10) Система транспортировки глинистой воды

(1) Гидродинамометр глинистой воды

1. Извлеченный расход грунта QE



(3-38),


где: QE– расход грунта в забое (м3/ч);

D – диаметр забоя (м);

V – максимальная скорость движения (м/ч).

2. Скорость бурового раствора на выходе Q2


(3-39),


где: Q2– расход бурового раствора (м3/ч);

Q E – расход извлеченного грунта (м3/ч);

ρE– плотность извлеченного грунта (т/м3);

ρ1 – плотность подачи бурового раствора (т/м3);

ρ2 – плотность разгрузки бурового раствора (т/м3).

3. Расход подачи бурового раствора Q1



(3-40),


где: Q1 – расход подачи бурового раствора (м3/ч);

Q 2 – расход сброса бурового раствора (м3/ч);

Q E – расход выемки (м3/ч).

Подача и сброс бурового раствора должны учитывать определенный запас, коэффициент запаса обычно составляет 1.2 ~ 1.5. В то же время, принимая во внимание систему транспортировки глинистой воды в режиме байпаса, подачу и сброс бурового раствора равных характеристик, при подаче шламового насоса выбор величины его вытеснения не должен быть меньше, чем теоретический поток сброса.

(2) Расчет расхода подачи и сброса бурового раствора

1. Скорость потока в трубе подачи бурового раствора


(3-41),


где: V1 – скорость потока в трубе подачи бурового раствора (м/ч);

Q 1 – расход бурового раствора (м3 /ч);

D 1 – внутренний диаметр трубы для подачи бурового раствора (м).

2. Скорость расхода в грунтопроводе где:


(3-42),


где: V2 – скорость расхода в грунтопроводе (м/ч);

Q 2 – расход сброса бурового раствора (м3/ч);

D 2 – внутренний диаметр грунтопровода (м).


3.3. КОНТРОЛЬ ОСАДКИ ЩИТОВОЙ КОНСТРУКЦИИ

Технология щитовой проходки является одним из наименее нарушающих городское подземное строительство методов, но, как и в случае с другими методами строительства, из-за геологических условий и техники строительства трудно полностью избежать нарушения окружающей среды при щитовом продвижении, и поэтому существует вероятность оседания грунта. В тяжелых случаях может возникнуть угроза безопасности прилегающих зданий, дорог и подземных сетей трубопроводов, что в конечном итоге может привести к серьезным последствиям, как показано на рис. 3.15 и рис. 3.16. Этот раздел посвящен механизму нарушения грунта при строительстве во время щитовой выемки грунта и представляет методы прогнозирования и контроля осадки грунта.



Рис. 3-15. Наклон здания


Рис. 3-16. Растрескивание грунта


3.3.1. Механизм нарушения почвы при щитовой выемке грунта

По мере продвижения щита, оседание или поднятие фундамента происходит накладываясь друг на друга, процесс показан на рис. 3-17 и наконец достигает своего конечного значения. Где стадии 1 и 2 находятся до прохождения щита, стадия 3 – во время прохождения щита, а стадии 4 и 5 – это явления, происходящие после прохождения щита. Эти явления не являются неизбежными, и при условии, что схема туннелирования щита и параметры выбраны соответствующим образом, продольная деформация фундамента может быть сведена к минимуму. Краткое описание причин и механизмов оседания на каждом этапе приведено в таблице 3-5.


Рис. 3-17. Схема стадий деформации фундамента во время продвижения щита


1) Упреждающее регулирование

Предэкскаваторная осадка – это осадка, возникающая с момента, когда забой находится на значительном расстоянии (десятки метров) от точки наблюдения за грунтом до момента, когда забой достигает точки наблюдения и понижения уровня грунтовых вод по мере выемки щита. Расстояние, на которое влияет предварительное оседание, варьируется в зависимости от мягкости грунта.

2) Оседание или поднятие перед выемкой грунта

Предэкскаваторная осадка – это осадка, возникающая с момента, когда забой котлована находится на расстоянии нескольких метров от точки наблюдения, до момента, когда забой котлована находится непосредственно под точкой наблюдения. Когда давление в камере щита меньше фронтального давления, при выемке щита образуются стратиграфические потери и грунт над щитом оседает, и наоборот, когда давление в камере выше фронтального давления, грунт над щитом поднимается и опускается.

3) Оседание грунта во время прохождения щита

Оседание в период с момента, когда поверхность забоя достигает уровня непосредственно ниже точки наблюдения, до момента, когда конец щита проходит точку наблюдения, происходит в основном из-за нарушения почвы и снятия напряжения в почве, вызванного разницей между диаметром бурения щита и диаметром щита.

4) Осадка пустот в хвостовой части щита

Оседание, которое происходит после того, как хвост щита проходит непосредственно под точкой наблюдения. Это упругопластическая деформация, вызванная высвобождением напряжений грунта в пустотах хвостовой части щита. Величина оседания тесно связана с одновременным давлением цементации и скоростью заполнения шламом торца щита, которая меньше при более удовлетворительном заполнении, и наоборот.

5) Поздняя осадка грунта


Таблица 3-5. Причины и механизмы деформации, вызванные щитовой конструкцией


3.3.2. Факторы, влияющие на деформацию и оседание грунта

1) Свойства раскопанного пласта

(1) Глубина туннеля

Влияние глубины туннеля на стратиграфическое смещение варьируется в зависимости от стратиграфических условий, и Aттвелл вывел следующую зависимость:


(3-43),


где: R – радиус туннеля (м);

h – глубина заложения туннеля (м);

i – расстояние от оси туннеля до точки инверсии кривой опускания грунта (м);

k, n – константы, связанные с характеристиками грунта и строительными факторами.


(2) Верхняя часть нагрузки

Вертикальное давление над туннелем оказывает значительное влияние на оседание грунта. Broms & Bennermark предлагает выразить легкость строительства туннеля и степень смещения грунта в терминах коэффициента устойчивости Ns. В пластичных глинистых грунтах, когда глубина туннеля не меньше удвоенного диаметра туннеля, то есть z ≥ 2ч.

N s будет менее 6, когда строительство туннеля не будет очень сложным. В щитовой конструкции, чем выше значение Ns, тем выше вероятность проникновения глины в хвостовой зазор щита. Когда N s приближается к 7, щит становится трудно контролировать. Когда опорное давление высокое, оно часто вызывает поднятие поверхности и увеличивает просадку в дальнейшем, поэтому коэффициент устойчивости должен контролироваться в определенном диапазоне в соответствии с грунтовыми условиями. Ns определяется по следующей формуле:


(3-44),


где: σ z – общее вертикальное давление в центре туннеля на глубине заглубления;

σ r – опорное давление туннеля (включая давление воздуха);

c u – прочность грунта на сдвиг без деформации.

(3) Свойства почвы

Такие свойства, как сжимаемость и прочность грунта, также оказывают важное влияние на смещение грунта.

(4) Влияние характеристик щита

Несбалансированное давление воды и грунта на забой, снижение режущей способности и тяги приведут к обрушению забоя и чрезмерной выемке грунта, отклонения в проходке туннеля приведут к увеличению прицепных пустот, а чрезмерный крутящий момент резания и тяга щита на забое вызовут нарушение грунта.

(5) Влияние качества обратной засыпки цементирования и эксплуатационного качества

На смещение грунта влияют целесообразность и своевременность цементации обратной засыпки, качество сборки тюбингов, умеренность давления грунта, хорошее управление положением при продвижении щита, наличие отклонений и рывков, разумность процедуры строительства, квалификация и опыт строительного персонала и т. д.

2) Свойства грунтов при проходке туннелей

Источниками осадок грунта при щитовой проходке являются: изменение состояния грунта вследствие продвижения щита, упругопластические деформации грунта из-за вибраций в туннеле или величины среза при наклоне ротора. Далее приводится краткое описание причин осадок грунта:

(1) Движение грунта на поверхности забоя. Под воздействием щита напряжение грунта меняется, что приводит к движению грунта, особенно на поверхности забоя. Во время проходки горизонтальное опорное напряжение, оказываемое на грунтовые массы забоя, больше или меньше исходного бокового давления, поэтому грунт над передней частью забоя может оседать вниз или вспучиваться вверх.

(2) Нарушение структуры пласта приводит к движению грунта. К причинам нарушения структуры пласта относятся зазоры между зданиями, избыточная или недостаточная экскавация или другие причины потери грунта, а именно:

1. Сдавливание грунта перед щитом.

2. Свободные зазоры в грунте из-за разницы диаметров щитового корпуса и смонтированного тюбинга.

3. Изменение уклона щита приводит к избыточной экскавации. Например, изменение уклона щита меняет направление движения проходческого щита, что приводит к восходящему или нисходящему уклону, избыточной экскавации и увеличению зазора в хвостовой части щита.

4. Потеря грунта в связи с кривизной проходки.

5. Избыточная экскавация выступами ножевого кольца в процессе проходки.

6. Вдавливание грунта в зазор хвостовой части щита. После выхода тюбинга из хвостовой части щита между стеной забоя и внешним краем тюбинга образуется зазор. В случае несвоевременного нагнетания тампонажного раствора, недостаточного количества раствора или давления нагнетания окружающий грунт теряет равновесие в трех измерения и смещается в данный зазор, что приводит к проседанию грунта. В неустойчивых водоносных породах это является наиболее распространенной причиной просадки грунта. Когда слой глины приклеивается к внешней оболочке щита, зазор между тюбингом и грунтом значительно увеличивается. Если не увеличить количество тампонажного раствора, то это неизбежно приведет к усилению просадки грунта.

(3) Просадки грунта происходят по причине того, что из-за продвижения щита давление воды в порах грунта изменяется или уровень грунтовой воды снижается из-за уменьшения количества атмосферных осадков.

(4) Деформация тюбинга, вторичная консолидация и изменение состояния грунта (особенно в мягких водонасыщенных грунтах).

Под воздействием давления окружающего грунта тюбинг деформируется, при этом тюбинг воздействует на окружающий грунт в противоположном направлении. Деформация грунта – комплексное проявление взаимодействия грунта и тюбинга. Из-за строительных факторов, таких как трамбование грунта во время продвижения щита и залив тампонажным раствором хвостовой оболочки щита, в окружающем пласте образуется зона избыточного порового давления воды. Затем избыточное поровое давление рассеивается и становится нормальным, во время этого процесса происходит выжимание воды или сближение грунтовых частиц, что приводит к осадкам грунта (консолидации грунта). После первичной консолидации грунта он снова подвергается длительному компрессионному сжатию. Уплотнение продолжается в результате ползучести твердых частиц грунта, что называется вторичной консолидацией грунта. В мягких пластичных и текучих грунтах с большим коэффициентом пористости и высокими показателями чувствительности вторичная консолидация часто длится несколько лет, а коэффициент вторичной консолидации может достигать 35%.

(5) Движение щита назад.

Когда процесс проходки останавливается, домкрат из-за утечки масла может вернуться в свое первоначальное положение, в результате чего щит может откатиться назад, приводя к осадкам или разрыхлению грунта в месте забоя.

(6) Обделка туннеля может привести к большой осадке грунта. Кроме того, если в обделке туннеля есть течь и вода попадает на мягкий грунт, это вызовет его оседание.

(7) Изменение направления движения щитовой проходки.

Если щит движется неровно, меняется уклон щита, щит поднимается или опускается, то фактический участок выемки представляет собой не круг, а эллипс, что приводит к осадке грунта. Чем больше угол отклонения между осью щита и осью туннеля, тем больше степень разрыхления и перебора грунта и, как следствие, осадки грунта.

3) Свойства глинистых растворов

Основной метод поддержания стабильности забоя при помощи глинистого раствора заключается в том, что глинистый раствор проникает в пласт под действием осмотического давления, в результате чего происходит кольматация пор пласта твердыми частицами глинистого раствора и образуется гидрофобная пленка. Гидрофобная пленка создает избыточное давление и тем самым удерживает частицы грунта на поверхности стенок туннеля. В процессе продвижения проходческого щита пленка проходит следующий цикл: «образование – затвердевание – разрушение – образование». Таким образом, стандарт для оценки качества глинистого раствора с точки зрения уменьшения осадок грунта таков: количество глины, просочившейся в пласт, должно быть низким, а толщина гидрофобной пленки и скорость ее образования должны обеспечивать постоянную стабильность забоя перед исполнительным органом щита во время проходки туннеля.

Из-за того, что диаметр ротора немного больше диаметра корпуса щита, между корпусом щита и грунтом может появляться свободный зазор. Этот зазор заполняется глиной и частью осевшего грунта. Если возможно увеличить текучесть этой части грунта и уменьшить трение и давление головки щита на окружающий пласт, то осадки грунта уменьшатся.

4) Давление синхронного цементирования

Степень компенсации вспучивания поверхности земли Δs при прохождении хвостовой части щита является функцией, которая определяется толщиной земляного покрова, геологическими параметрами, наружным диаметром тюбингов D2 и коэффициентом избыточного давления синхронного цементирования ΔP/Pстатичный. Зависимость между давлением синхронного цементирования и оседанием поверхности земли получается на основе выводов формулы Пика (Peck):


(3-45а),


(3-45b),


(3-45c),


где: D y – эквивалентный радиус избыточного давления;

m – коэффициент коррекции избыточного давления.

5) Прочие параметры проведения работ

Толкающее усилие резцовой головки является одним из важных факторов поддержания стабильности забоя, поэтому выбор правильной величины этого усилия является сложной задачей. Как правило, в процессе строительства установка давления разреза не принимаются во внимание, а служат лишь в качестве предохранительных запасов. На самом деле, в процессе проходки туннеля не следует пренебрегать значением резцовой головки относительно поддержки забоя. То, как резцовая головка выполняет функцию поддержания устойчивости забоя, играет важную роль в уменьшении возмущения массива грунта.

Что касается скорости продвижения, то степень возмущения грунтовых масс в процессе проходки будет увеличиваться в зависимости от времени прохождения. Оседание поверхности земли, вариации состава почвы создают определенное отставание, поэтому увеличивая скорость продходки, можно уменьшить степень возмущения на массив грунта.


3.3.3. Способы прогнозирования смещения пластов

Способы прогнозирования смещения пластов, в основном, включают в себя эмпирические формулы, цифровое моделирование, испытания модели, экспертные системы и теории серых систем (серый реляционный анализ). Среди них экспертные системы и теории серых систем – это самый горячо обсуждаемый предмет исследований в последние годы, который представляет собой новый ход мыслей на прогнозирование деформаций, но имеет свои сложности в виде огромного количества факторов, которые необходимо учитывать, а также сложности моделирования и трудностей применения в инженерии. Способ испытания модели, в свою очередь, характеризуется высокой стоимостью и плохой управляемостью. Модель метода эмпирической оценки, основанная на статистическом анализе данных из фактических измерений, характеризуется простотой и практичностью, помогает на стадии проектирования с большой долей достоверности оценить степень возможной деформации и имеет хорошую эффективность руководства строительством. Способ цифрового моделирования также является одним из высокоэффективных методов и занимает важное место в изучении закономерностей смещения горизонта в пластах проходки туннелей.

1) Эмпирическая формула

Способ эмпирического прогнозирования, в основном, осуществляется посредством наблюдения за оседанием поверхности земли, данные наблюдения подвергаются математической обработке, а затем в математической форме применяются относительно закономерности оседания, на основании этого, делаются теоретические и эмпирические выводы о максимальной степени просадки поверхности и ее распределении. В практике строительства применяется формула Peck и серия корректирующих формул Пика. Peck предположил, что оседание земли в процессе работ происходит в недренируемых условиях, поэтому объем впадины оседания равен объему потери пласта. Потеря пласта распределяется равномерно по длине туннеля. Поперечное распределение оседания поверхности земли аналогично кривой нормального распределения, как показано на рис. 3-18.


Рис. 3-18. Форма впадины оседания верхнего грунта над туннелем – кривая нормального распределения


(3-46а),


(3-46а),


где: S (x) – длина оседания поверхности земли в области центральной линии туннеля;

S max – степень просадки поверхности земли относительно центральной оси туннеля;

x – расстояние от центра оси до края впадины оседания;

i – коэффициент ширины впадины оседания.

V s— степень потери пласта при проходке 1м туннеля.


(3-47),


где: z – расстояние от центра забоя до поверхности земли; φ – угол внутреннего трения окружающих пластов, ширина впадины оседания поверхности земли B ≈ 2.5i.

Aттвелл внес корректировки в коэффициент ширины i, предложил коэффициент ширины впадины поперечного оседания i, зависящий от прочности пласта вблизи поверхности земли, глубины залегания туннеля и радиуса туннеля, что можно приближенно записать как:


(3-48),


(3-49),


где: z – расстояние от центра забоя до поверхности земли;

R – внешний радиус щита;

A – поперечное сечение туннеля;

K, n – испытательный коэффициент;

V – объем впадины оседания;

δ max – степень оседания поверхности земли по центральной линии туннеля.

Английские ученые Клаф и Шмидт в 1974 году предложили следующую расчетную формулу коэффициента ширины впадины оседания поверхности в условиях насыщенной глинистой гидропластичности:


(3-50),


где: z – глубина от поверхности земли до центра туннеля;

R – радиус туннеля.

О’Рейли-Нью провел анализ максимальных значений просадки, объема впадины оседания и фактических значений точки перегиба для 11 из 19 объектов в условиях вязких слоев и для 6 из 16 объектов в условиях песчаного грунта и грунта обратной засыпки в Англии, на основании чего выдвинул гипотезу о том, что форма впадины оседания представляет собой кривую нормального распределения, и предположил, что для вязких слоев подходит следующая формула:


(3-51),


(3-52)


где: для k в твердом глинистом грунте берется 0.4, в мягком глинистом грунте берется 0.7, а в глинистом грунте средней твердости и мягкости берется 0.5. В дополнение к этому, с помощью статистического метода также вывел формулу вычисления степени максимального горизонтального оседания;


для песчанистых грунтов:


(3-53),


для вязких грунтов:


(3-54),


формула для вычисления диапазона влияния оседания:


(3-55),


где: в значениях k и n – при использовании щита с грунтопригрузом, для вязкого грунта: k = 1.3, n = 0.70; для песчанистого грунта: k = 0.65, n = 1.2.

2) Цифровое моделирование

Способ цифрового моделирования – это еще один важный метод прогнозирования оседания поверхности земли. Хотя параметры технологического уровня невозможно точно определить до начала строительства, однако, влияние определенных изменений этих параметров на смещение поверхности земли и грунтовых слоев вокруг туннеля поддается оценке. С помощью моделирования анизотропии почвы и внутренней пластичности грунта возможно получить рациональные значения распределения оседания, также возможно осуществлять прогнозирование горизонтального и вертикального распределения смещения грунта на ключевых участках туннельного строительства. Среди часто применяемых техник цифрового моделирования существуют: метод конечных элементов, метод граничных элементов и другие методы, покрывающие сферы двухмерной плоской деформации, трехмерной упругопластичности и т. д.

3) Испытание на модель

В соответствующих условиях, моделирование производственных работ с помощью испытания моделей для определения закономерностей изменения смещения грунтовых масс и рабочих параметров, а также определения соответствующих требований и мероприятий технического контроля – это эффективное средство для снижения строительных рисков и обеспечения безопасности. В настоящее время испытания модели для щитопроходных работ подразделяются на два типа: испытание модели центробежного поля и испытание модели гравитационного поля. Испытание центробежной модели характеризуется точностью коэффициента подобия и высокой степенью соответствия действительности, но технология испытаний сложна. При испытании гравитационной модели, показатели параметров, особенно коэффициент подобия, не могут быть установлены и воссозданы с полной точностью, однако, в практических условиях удается гарантировать рациональность и достоверность подобия получаемых параметров, также удается достигать достаточно хороших результатов испытаний и их цели, при этом технология испытаний достаточно проста и процессы легко контролировать. Принимая во внимание реальные и экспериментальные условия, для прогнозирования обычно применяется испытание модели гравитационного поля.

В работах Lee Androw (1982), Roweetal (1983) был предложен метод прогнозирования оседания поверхности земли и разноглубинных грунтовых слоев. Было введено понятие о параметре потери пласта GAP (параметр суммарного зазора) для прогнозирования оседания недренированных насыщенных глинистых грунтов. Под GAP подразумевается количество избыточно выкопанных грунтовый масс, превышающее внешний диаметр сегментов туннеля, которое включает в себя потерю избыточно выкопанного грунта под действием силы трехмерного движения в отношении поверхности забоя и потерю грунта под воздействием факторов проведения работ. Размер зазора GAP равен расстоянию от свода произведенной щитом выемки до верхушки тюбинговой обделки туннеля, как показано на рис. 3-19.


Рис. 3-19. Определение параметра потери грунта после проходки GAP


По определению Lee:


(3-56),


где: GP – геометрический просвет между внешним диаметром щита и внешним диаметром тюбинга, сформированный толщиной хвостовой части щита δ и хвостовым зазором х;



(3-57),


где: D – внешний диаметр щита;

d – внешний диаметр тюбинга.

Хвостовой зазор х подстраивается под осуществление горизонтальной и вертикальной корректировки при отклонении щита от проектной осевой линии, подстраивается под осуществление работ по сборке тюбингов. Выборочное значение х составляет примерно 25 ~ 60 мм. Значение G P можно определить сразу после того, как щит и тюбинг были выбраны.

U*3D – это эквивалент трехмерного радиального смещения, вызванного продвижением забоя. Он указывает превышение объема выемки грунта при обрушении на забой грунтовых масс, вследствие трехмерной деформации, вызванной сбросом напряжения в забое;

ω – указывает потерю грунта, вызванную факторами проведения работ (включая выправление отклонения щита, уклон вверх, уклон вниз, отход назад и т. д.). Формула расчета значения ω следующая:



(3-58),


где: L – длина щита;

α – угол подъема при уклоне щита вверх.

Причина потери грунтовых слоев вследствие проходки щита является многофакторной. В таблице 3-6 перечислены формулы прогнозирования и соответствующие выборные значения GAP для потерь грунтовых слоев всех видов в условиях вязкого грунта.


Таблица 3-6. Факторы, которые необходимо учитывать при расчете GAP (применительно к вязким слоям)


Примечание: R – внешний радиус щита, R1 – внешний радиус тюбинга, t – количество избыточной проходки, L – длина щита, α – угол подъема, RC – горизонтальное смещение грунтовых масс забоя назад во время продвижения щита на единичную длину, h – радиус кривой продвижения щита, A – объем фронтального препятствия перед щитом, V% = значение потери пласта / (πR2).

Фактическое выборное значение U*3D и ω различается для разных методов щитовой проходки и разных проектных условий. В таблице 3-6, где с помощью комбинаций различных значений потери пласта подразделяются на различные модели, при отличающихся моделях потери пласта, способы расчета GAP также будут отличаться. Использование технологии синхронного цементирования в рабочем процессе сдерживает увеличение потерь пласта, поэтому при определении модели потери пласта необходимо включить в расчеты влияние коэффициента цементирования (n%). Коэффициент цементирования – это отношение размера фактического зазора, заполняемого бетонирующей суспензией, к количеству теоретической потери пласта. Модель 1: используется в условиях, при которых щит обладает хорошими механическими характеристиками, персонал обладает достаточным опытом, продвижение щита по прямой происходит в обычном режиме. При этом выправление отклонения щита, уклон вверх и уклон вниз, являются малыми, значит избыточная выемка, вызванная этими действиями, отдельно не учитывается; при обычном зигзагообразном продвижении щита вперед, значение потери пласта в этой части ω 1 рассчитывается с помощью количества избыточной выемки при ее срезе; при условии сохранения баланса между давлением грунта в герметичном призабойном отсеке и давлением грунта с жидким шламом в забое, значение U*3D, определяемое потерей грунта в забое, будет равно нулю; не учитывается потеря пласта вокруг корпуса щита; учитывается влияние Gp; учитывается синхронное цементирование. Параметры потери окружающих обделку пластов следующие:



(3-59),


Параметры потери пласта вокруг корпуса щита:


(3-60),


Модель 2: используется при нахождении щита в особых грунтовых слоях и в особых проектных условиях. Например, при верхнем уклоне щита во время продвижения в условиях песчанистых грунтов, либо поверхностного земляного покрова на малой глубине, либо при нерациональной установке толкающего усилия домкратов щита после завершения проходки щита (финального пробития) и отклонении от осевой линии, либо при продвижении щита по кривой. Учитывается потеря пласта избыточной проходки резцовой головки и вокруг корпуса щита, также учитывается потеря пласта U*3D вследствие трехмерного движения грунтовых масс забоя, таким образом, параметры потери пласта вокруг обделки следующие:


(3-61),


Параметры потери пласта вокруг корпуса щита:


(3-62),


Модель 3: в основном используется при потере стабильности забоя в процессе продвижения щита. При нормальном продвижении щита вперед, трехмерная деформация грунта забоя обычно очень мала. Однако, в случае движения щита назад, либо в случае обвала забоя в результате затопления, вызванные этим потери пласта достаточно существенные. В таком случае предполагается, что забой считается свободным, изначальное напряжение грунта забоя полностью сброшено, тогда максимальное значение потери пласта забоя равно (U*3D)max, в этом случае параметры потери пласта следующие:


(3-63),


Параметры потери пласта вокруг корпуса щита:



(3-64),


4) Экспертная система и теория серого в прогнозировании смещения пласта

Хотя эмпирический метод и цифровой способ стали двумя главными методами прогнозирования пласта в туннельной проходке, с ними сопряжено множество сложностей. Если при использовании эмпирической формулы встречается большой разброс ограничивающих факторов, например, геометрическая форма, условия пласта, способ строительства, качество строительства и т. д., то экспертный метод предлагает новый путь решения. Опыт проведения работ и результатов исследований резюмируется, экстрагируется в систематизированные эмпирические правила, попадает в базу знаний экспертной системы, с помощью вычислительного оборудования моделируется в экспертное логическое заключение, что помогает не только избежать многих затруднений, с которыми сталкивается точная наука, но и сделать результаты прогнозов более применимыми. На основе обобщения результатов исследований за более чем 20 лет Университет Тунцзи выдвинул концепт использования экспертной системы для прогнозирования оседания туннелей, создав в 1990 году прототип экспертной системы для прогнозирования оседания поверхности земли, который был применен в мониторинге строительства первой линии Шанхайского метрополитена и показал достаточно хорошие результаты.


3.3.4. Контроль оседания и деформации поверхности земли

Размер деформации поверхности земли зависит от условий пластов и грунтовых вод, диаметра туннеля, глубины проходки, условий проведения работ и т. д. Выбор подходящих параметров проходки и вспомогательных работ имеет важное значение для контроля оседания и деформации поверхности земли.

1) Предварительный контроль перед проведением проходческих работ.

Перед началом проведения щитопроходных работ, прежде всего, необходимо произвести геологическую разведку всего туннельного пути, затем, на основании различных геологических условий, выбрать нужный тип щита и способы проведения вспомогательных работ. При выборе щита, кроме таких факторов как геологические условия пласта в районе строительства, состояние поверхности земли вдоль туннеля, длина туннеля, форма сечения туннеля, сроки строительства, условия эксплуатации и т. д., следует также тщательно изучить вопросы, связанные с проведением проходки, обделки, чтобы работы с применением выбранного типа щита были произведены безопасно и экономично.

Кроме этого, с целью уменьшения деформации фундаментов, перед продвижением щита, следует произвести прогнозирование на основании предыдущего строительного опыта, метода конечных элементов и прочих методов, на основании результатов этого прогноза установить основные значения опорных величин. Вместе с этим, во время продвижения над центральной осью туннеля, а также в пределах обеих сторон необходимо установить контрольные точки для осуществления нивелировки, руководствуясь результатами наблюдений производить работы, корректировать параметры, суммировать опыт и использовать данные при управлении работами на последующих участках.

2) Контролируя параметры проходки во время продвижения щита, необходимо минимизировать объемы избыточной проходки и воздействие на окружающие пласты, посредством оптимизации и сочетания параметров проходки достигать максимально выгодных условий продвижения щита, таким образом добиваясь минимального нарушения окружающего грунта, малых потерь пласта, минимального давления поровых вод, а также наилучшего контроля оседания и вспучивания поверхности земли, высокой скорости продвижения щита и высокого качества монтажа тюбингов.

На этапах проходки при строительстве, на основании процесса и характеристики строительства туннеля щитовой проходкой , основные причины деформации поверхности земли вследствие щитовой проходки можно резюмировать следующим образом:

(1) Движение грунтовых масс забоя. Во время проходки туннеля, когда горизонтальное опорное напряжение, оказываемое на грунтовые массы забоя, больше, либо меньше исходного латерального (бокового) давления, грунт над передней частью забоя может оседать вниз, либо вспучиваться вверх.

(2) Грунт экструдируется в хвостовой зазор щита. После покидания тюбингов хвостовой частью щита, между стенкой шахты и внешней стороной тюбинга образуется кольцо зазора, в которое смещается грунт, тем самым вызывая оседание поверхности земли.

(3) Взаимодействие между грунтовой массой и тюбингом воздействуют друг на друга. Под воздействием давления окружающего грунта тюбинг деформируется, при этом тюбинг воздействует на окружающий пласт в противоположном направлении. Деформация пласта – комплексное проявление взаимодействия грунтовой массы и тюбинга.

(4) Изменение направления продвижения. При осуществлении уклона щита вверх, либо вниз, происходит экскавация избыточной массы грунта и хвостовой зазор щита увеличивается.

(5) Вторичная консолидация возмущаемого грунтовой массы – это еще одна важная причина деформации, особенно в насыщенных пластов мягкого грунта.

Таким образом, контролируя оседание и деформацию поверхности земли в процессе проведения проходческих работ, следует обращать особое внимание на следующие мероприятия.

1) Контроль параметров проходки

Продвижение щита вперед происходит, прежде всего, посредством управления параметрами толкающего действия гидроцилиндров. В процессе продвижения щита вперед преодолевается сопротивление фронтальной массы, сила трения между корпусом щита и грунтовой массой, между хвостовой частью щита и тюбингами, между прицепным послещитовым комплектом и стальными рельсами. Общее толкающее усилие щита должно превышать сумму фронтального толкающего усилия и общей силы трения, но слишком большое толкающее усилие может привести к сжиманию фронтальной грунтовой массы, при этом слишком малая тяга негативно влияет на скорость продвижения щита. Как правило, общее толкающее усилие щита должно соответствовать следующему соотношению: Активное давление фронтальной грунтовой массы + давление воды + общая сила трения < общее толкающее усилие щита < пассивное давление фронтальной грунтовой массы + давление воды + общая сила трения.

Во время продвижения щита, следует контролировать скорость продвижения, не давая щиту двигаться назад. Скорость продвижения определяется толкающим усилием гидроцилиндров и количеством входящего и выходящего грунта. Слишком большая, либо слишком малая скорость одинаково негативно сказываются на контроле положения щита. Слишком большая скорость может привести к излишнему «всплытию», щита, слишком малая – к излишнему погружению. Во время монтажа тюбингов, при сжатии гидроцилиндров продвижения может возникать движение щита назад, что, в свою очередь, вследствие потерь пласта, неизбежно приведет к оседанию грунтовой массы над забоем.

При проходке щита с грунтопригрузом (либо гидропригрузом), необходимо произвести оптимальные установки относительно давления грунта (либо глинистой воды) в призабойном отсеке, чтобы соотношение давления грунта (глинистой воды) в герметичном призабойном отсеке и водно-грунтового давления в забое находилось в примерно уравновешенном балансе. Это ключевой параметр сохранения стабильности забоя и основное техническое звено для щитовой проходки с грунтопригрузом, либо гидропригрузом.

2) Контроль положения и выравнивания отклонений

Положение щита включает в себя три параметра: уклон продвижения, направление плоскости и собственный угол поворота. Факторы, влияющие на положение щита: количество выпускаемого грунта, толщина грунтового покрова, условия цементирования вокруг корпуса щита во время продвижения, условия распределения пласта грунта в забое, условия распределения усилия гидроцилиндров продвижения. Например, при продвижении в условиях песчанистых слоев, либо малой толщины грунтового покрова, может происходить излишнее «всплытие» щита. Способы решения, в основном, заключаются в регулировке рационального положения гидроцилиндров продвижения.

Траектория продвижения щита вперед, как правило, является зигзагообразной. Необходимо обеспечить прохождение щита по заданной проектной кривой, в процессе продвижения вперед, посредством своевременного контроля производить корректировку отклонения. Данная корректировка не должна быть слишком большой, чрезмерное исправление отклонения может привести к излишней проходке и повлиять на стабильность окружающей грунтовой массы, поэтому необходимо делать небольшие корректировки, постоянно производя мониторинг.

3) Контроль давления в призабойном отсеке

В процессе щитовой проходки, сохранение баланса между давлением в призабойном отсеке и давлением поверхности работ (сумма давлений грунта и водно-глинистого раствора) является крайне важным фактором предупреждения оседания поверхности земли и сохранения безопасности строений. Значение давления в призабойном отсеке P должно быть противопоставлено давлению грунтовых пластов и гидростатическому давлению. Сумма давления гидростатического давления в центре резцовой головки и давления грунта равна P0, то P = KxP0. Для вязкостных грунтов в значение K, как правило, берется 1.0, при этом по фактической ситуации производятся корректировки с желательной градацией в 0.005 МПа. Для песчанистых грунтов в значение K, как правило, берется 1.3, при этом желательная градированная корректировка составляет 0.01 МПа. Корректировки давления в призабойном отсеке P в процессе проходки осуществляются на основании информации мониторинга геологических условий, глубины прохождения и оседания поверхности земли, посредством сохранения баланса между объемом выемки грунта и объемом выведенного грунта, что достигается установками и корректировкой скорости проходки и объема выводимого грунта.

4) Контроль количества выпускаемого шлака

В процессе щитовой проходки объем выемки грунта зависит от скорости вращения резцовой головки, крутящего момента разрезания и толкающего усилия гидроцилиндров продвижения. Объем отводимого грунта, в свою очередь, регулируется скоростью вращения шнекового транспортера (либо расхода шламового насоса). Так как щиты с грунтопригрузом и гидропригрузом используют давление грунта для уравновешивания давления грунта / шлама забоя, чтобы колебание давления в призабойном отсеке, либо давления шлама оставалось на малых величинах, необходимо сохранять баланс между объемом выемки грунта и объемом отводимого грунта. Объем отводимого шлака должно соответствовать объему проходки таким образом, чтобы значение опорного давления было стабильным и рациональным, тем самым обеспечивались наилучшие условия работы щита.

5) Контроль цементирования

По мере продвижения щита между корпусом щита и внешним периметром тюбинга образуется технологический зазор. Полное и одновременное заполнение этого зазора – это ключевое звено в уменьшении оседания поверхности земли. При определении параметра давления цементирования следует избегать чрезмерно большого давления, которое может привести к вспучиванию поверхности земли, либо повреждению тюбинговой обделки и повреждению хвостовой части щита. Теоретически давление цементирования должно быть чуть выше давления грунта и воды.

Для получения ожидаемого эффекта, цементирование должно происходить своевременно, в достаточном количестве и с малой усадкой объема суспензии. Во время цементирования давление заполнения отверстий должно превышать сумму давления статичных вод и давления грунта в данных точках, при этом необходимо следить, чтобы происходило именно заполнение, а не рассечение. Чрезмерное давление бетонирующей суспензии может привести к нарушению грунтовых пластов вокруг тюбингов и достаточно серьезному оседанию в будущем, а также растеканию суспензии. В обратном случае, при чрезмерно малом давлении цементирования, скорость заполнения слишком мала, заполнение происходит не полностью, что также может привести к оседанию.

6) Во время осуществления различных технологических этапов щитовой проходки, с целью предотвращения оседания поверхности, возможно проведение следующих целенаправленных мероприятий:

(1) Начало и завершение щитопроходной работы

Для уменьшения трения между щитом и окружающей породой в процессе прохождения, конструкция щита спроектирована с увеличением размера во фронтальной части и уменьшением в хвостовой части. Размер зоны проходки резцовой головкой превышает внешний диаметр щита, подземные воды в зоне рабочей плоскости забоя могут вытекать в направлении хвостовой части щита. Таким образом, необходимо прежде всего обеспечить хороший уровень герметичности резиновых затворных уплотнений в стартовой и финальной точках пробития, а вслед за этим, после того как хвостовая часть покинет тюбинг, необходимо своевременно начать заполнение бетонирующей суспензией.

(2) Замена резов резцовой головки в процессе проходки

При определенном износе резца резцовой головки во время проходки, либо для адаптации к различным грунтовым пластам, необходимо производить замену резца. Замена резца, как правило, производится в состоянии пониженного давления, так как в этот период высока вероятность дестабилизации забоя, обрушения и деформации фундаментов. Значит, необходимо производить замену в местах проходки, обладающих подходящими для этого геологическими условиями и соответствующими условиями на поверхности, либо предварительно осуществлять укрепление пласта, либо производить определенные мероприятия, такие как работа сжатым воздухом и т. д., и только после этого производить замену резца.

(3) Прохождение под особыми защищаемыми строениями

При прохождении вблизи важных защищаемых строений, особо чувствительных к деформации основания, при недостаточном контроле есть опасность их разрушения вследствие оседания, либо вспучивания поверхности земли. При прохождении под такими строениями необходимо усилить контроль за проведением работ. С целью обеспечения защиты наземных строений и безопасности подземных коммуникаций, прежде всего, следует произвести геодезический мониторинг работ, на основании которого разработать список мероприятий по контролю оседания поверхности земли и способов защиты окружающего пространства. Необходимо минимизировать степень нарушения, оказываемого на забой, в ходе работ избрать гибкие, быстрые и рациональные способы поддержки фронтальной поверхности, либо соответствующие значения давления сжатого воздуха для предупреждения обрушения грунтовой массы, тем самым защитить забой от излишнего воздействия. Следует строго контролировать объем выходящего грунта в процессе проходки. Во избежание излишней проходки, следует контролировать степень корректировки отклонения при продвижении щита на одно звено. Также следует увеличивать скорость работ, обеспечивать их непрерывность и т. д. Помимо этого, заполняя хвостовой технологический зазор бетонирующей суспензией под давлением, необходимо, насколько это возможно, сократить время обнаженного состояния обделки после отхода от нее хвостовой части щита, тем самым предупреждая обрушение пласта, обеспечивая необходимый количественный показатель и контроль давления цементирования. Также как и в других сферах подземного строительства, способы защиты близлежащих строений можно подразделять на: переукрепление основания, усиление конструкции, укрепление основания, перегораживание и замораживание и др.


3.3.5. Применение заполнителя Clay-Shock / GMEM (Grammud Effect Material) для контроля оседания

1) Состав и применение заполнителя GMEM

Заполнитель GMEM представляет собой порошкообразное вещество, состоящее из синтетических глинистых минералов на основе кальция, коллоидного стабилизатора и сложных диспергирующих агентов. Данный материал смешивают с определенной долей воды, образуя суспензию, затем смешивают с жидким стеклом в определенной пропорции и производят перемешивание. После схватывания материал не поддается воздействию воды, получая определенные удерживающие свойства и, при низкой твердости, превращается в вязкую, никогда не затвердевающую, массу.

Оседание грунтовых пластов, вызванное щитовой проходкой, включает в себя пять стадий. Как показано на рис. 3-20: первичное оседание (раннее оседание), оседание по прибытии щита (проходческое оседание), оседание при прохождении щита, оседание при покидании тюбинга хвостовой частью щита (оседание в зоне хвостового зазора), а также позднее оседание (последующее оседание).

Метод работ с заполнителем GMEM в основном используется для устранения оседания на стадии 3, также помогает эффективно контролировать оседание на стадии 4. Такой способ особенно полезен в процессе проходки под зданиями со слабым основанием, железными дорогами, трубопроводами и в неглубоких слоях. Данный способ использовался при: строительстве ветки № 8 Уханьского метрополитена с применением щита крупного диаметра, проходящего сквозь жилые районы;

при строительстве ветки № 7 Уханьского метрополитена от ул. Сянган до Ханькой Ань, проходящего через группы зданий;

при строительстве ветки № 7 Уханьского метрополитена под 27-й секцией железной дороги;

при прохождении под зданиями во время строительства туннеля Qinghua Garden Пекинской железной дороги Zhangjiako;

при прохождении под группой свайных фундаментов микрорайона Zhenghe во время строительства ветки № 5 метрополитена г. Чженчжоу; а также на более чем 50 объектах щитопроходного строительства по всему Китаю.


Рис. 3-19. Определение параметра потери грунта после проходки GAP


2) Применение заполнителя GMEM и анализ оседания на стадии прохождения щита

В процессе щитовой проходки снаружи корпуса щита в результате проходки образуется зазор, который может вызывать оседание грунтовых масс, особенно в условиях мягких пород неглубоких слоев, либо при прохождении под строениями. Для уменьшения степени нарушения вышележащего грунта, зазор заполняется различными материалами, что позволяет контролировать оседание грунта. Эти заполняющие материалы должны обладать следующими характеристиками:

(1) Материал должен обладать достаточной текучестью. Если материал не обладает хорошей текучестью, то он не может полностью заполнить все пространство зазоров вокруг корпуса щита, и не сможет создать эффективную обволакивающую защиту. Если же заполнять зазор другими пластичными материалами, они будут лишь растекаться по корпусу щита; при этом будет сложно контролировать давление заполнения и будет высока вероятность вспучивания грунтовой массы. Особенно при прохождении под опасными участками с плохим основанием: опасность вспучивания грунтовых масс может превышать опасность оседания.

(2) После заполнения зазора заполняющий материал должен создавать определенное удерживающее усилие, чтобы сдерживать оседающую грунтовую массу. Однако прочность сопротивления такого материала должна быть низкой, так как при высокой твердости значительно возрастет нагрузка на щит, что приведет к застреванию щита.

(3) Материал, после схватывания и образования пластичности, должен обладать определенной влагостойкостью, чтобы противостоять размыванию водой.

(4) Материал должен обладать определенной лубрикационной способностью, чтобы гасить сдвиговые колебания при разрезании и облегчать тяговую нагрузку на щит.

Заполнитель GMEM абсолютно удовлетворяет всем вышеперечисленным условиям и обладает следующими характеристиками и преимуществами:

(1) Заполнитель GMEM является бетонирующим материалом, состоит из двух жидкостных компонентов: при проведении работ, прежде всего заполнитель GMEM в виде порошка смешивают в определенной пропорции с водой, образуя суспензию, затем перемешивают ее с жидким стеклом, одновременно закачивая в зазор вокруг корпуса щита, заполняя его. Спустя 4 ~ 5 секунд после заполнения начинается пластификация и схватывание, так что материал, обладая хорошей текучестью во время процесса заполнения, эффективно достигает всех зон зазора.

(2) Спустя 20 ~ 30 секунд после заполнения, заполнитель GMEM пластифицируется и схватывается, приобретая состояние пластичной глины, имея определенную вязкость и создавая удерживающее усилие. При использовании с целью контроля оседания, вязкость заполнителя GMEM после затвердевания обычно можно с помощью дозировки регулировать в пределах значений 300 ~ 350 дПас, обеспечивая сравнительно малую твердость. Такую вязкость можно сравнить с зубной пастой (300 дПас) и воском (400 дПас).

(3) После схватывания и пластификации заполнитель GMEM не поддается разбавлению водой, при этом имеет определенную лубрикационную способность, что облегчает процесс щитовой проходки.

(4) Материал заполняет пространство вокруг корпуса щита, при этом перекрывая доступ суспензии в область резцовой головки при синхронном цементировании. Образовавшаяся вокруг щита глинистая пленка из заполнителя навсегда остается по ходу продвижения щита, тем самым уменьшается возможность проникновения суспензии в грунтовый слой и достигается наиболее эффективное предотвращение оседания в процессе синхронного цементирования, что позволяет осуществлять эффективный контроль оседания на 4-й стадии.

3) Способ применения заполнителя GMEM (рис. 3-21)

(1) Порошок заполнителя GMEM смешивается в определенной пропорции с водой, образуя жидкую суспензию GMEM (жидкость А). Дозировка порошка GMEM на кубический метр – 360 ~ 380 кг (показатель вязкости суспензии должен составлять около 300 дПас; для разных геологических условий и гидрологических режимов необходимо производить соответствующую корректировку дозировки);

(2) Затем жидкая суспензия GMEM (жидкость А) смешивается с жидким стеклом (жидкость В) в соотношении 20 / 1 и подается по трубопроводу в полость радиального отверстия в корпусе щита. Жидкости А и В после перемешивания через радиальное отверстие попадают во внешнее пространство вокруг корпуса щита. Так как заполнитель GMEM проникает в грунтовый слой в жидком состоянии, при выборе скорости закачки необходимо производить соответствующие корректировки. Для алевритовых глинистых слоев выбирается скорость закачки 120% ~ 150%; для алевритовых слоев – 130%; для окатанного гравия в зависимости от фактической плотности – 120% ~ 150%.


Рис. 3-21. Оборудование закачки заполнителя Clay-Shock (GMEM)


4) Примеры применения заполнителя Clay-Shock (GMEM)

При строительстве метрополитена аэропорта Тайвань – Таоюань CU02A, расположенного в уезде Таоюань на восточной стороне Наньканьси, был построен траншейный крытый туннель, после прохождения через Наньканьси, туннель входил в нижнюю часть аэропорта Таоюань, проходил через западную и восточную взлетные площадки, через терминалы № 1 и № 2, через командно-диспетчерскую вышку и т. д. Также в восточной части уезда Пусинь был построен траншейный крытый туннель, протяженность подземного участка составила 5.5 км, также были построены 3 подземные автобусные станции, 10 веток щитопроходных туннелей (по 5 верхних и нижних отрезков), а также 5 траншейных крытых туннельных отрезков. В данном проекте использовались 8 щитопроходных установок с грунтопригрузом диаметром 6.24 м. Прохождение отрезка взлетно-посадочной полосы аэропорта проходило в условиях валунно-галечниковых слоев, водный уровень составлял 8 м, высота покрывающего слоя над туннелем составила 25 м.

Во время обычной проходки щита степень фронтального и среднего оседания составила около 1.3 мм; во время прохождения 57-го звена на точке № 12 через радиальное отверстие щита был закачен заполнитель GMEM и пройдено 15 звеньев с заполнением вокруг корпуса щита, при этом показатели оседания контролировались на уровне 0.2 ~ 0.3 мм. Результаты измерения оседания пласта до и после использования заполнителя GMEM можно увидеть на рис. 3-22.


Рис. 3-22. Результаты измерений до и после использования заполнителя GMEM

Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей

Подняться наверх