Читать книгу Гидравлика - Группа авторов - Страница 7
7. Анализ основного уравнения гидростатики
ОглавлениеВысоту напора принято называть пьезометрической высотой, или напором.
Согласно основному уравнению гидростатики,
p1+ ρghA= p2+ ρghH,
где ρ – плотность жидкости;
g – ускорение свободного падения.
p2, как правило, задается p2= pатм, поэтому, зная hА и hH, нетрудно определить искомую величину.
2. p1= p2= pатм. Совершенно очевидно, что из ρ = const, g = const следует, что hА= hH. Этот факт называют также законом сообщающихся сосудов.
3. p1< p2= pатм.
Между поверхностью жидкости в трубе и ее закрытым концом образуется вакуум. Такие приборы называют вакуумметры; их используют для измерения давлений, которые меньше атмосферного.
Высота, которая и является характеристикой изменения вакуума:
Вакуум измеряется в тех же единицах, что и давление.
Пьезометрический напор
Вернемся к основному гидростатическому уравнению. Здесь z – координата рассматриваемой точки, которая отсчитывается от плоскости XOY. В гидравлике плоскость XOY называется плоскостью сравнения.
Отсчитанную от этой плоскости координату z называют пооразному: геометрической высотой; высотой положения; геометрическим напором точки z.
В том же основном уравнении гидростатики величии на p/ρgh – также геометрическая высота, на которую поднимается жидкость в результате воздействия давления р. p/ρgh так же, как и геометрическая высота, измеряется в метрах. В случае, если через другой конец трубы на жидкость действует атмосферное давление то жидкость в трубе поднимается на высоту pизб/ρgh, которую называют вакуумметрической высотой.
Высоту, соответствующую давлению pвак, называют вакуумметрической.
В основном уравнении гидростатики сумма z + p/ρgh – гидростатический напор Н, различают также пьезометрический напор Hn , который соответствует атмосферному давлению pатм/ρgh:
Hn < H