Читать книгу Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - Крейг Вентер - Страница 5
Глава 3. Начало цифрового века в биологии
ОглавлениеЕсли мы были правы, что, конечно, еще не доказано, то это значит, что нуклеиновые кислоты – не только структурно важные, но и функционально активные вещества в определении биохимических активностей и специфических характеристик клеток, и что посредством известных химических веществ возможно индуцировать предсказуемые и наследуемые изменения в клетках. Это было давнишней мечтой генетиков.
Освальд Эвери в письме к своему брату Рою, 1943{44}
В том же году, когда Шрёдингер читал свои эпохальные лекции в Дублине, наконец была открыта химическая природа его «кодированной записи» и вообще наследственности. Это дало новый взгляд на тему, интересовавшую, интриговавшую, захватывавшую и морочившую наших предков с самой зари человеческого сознания. У великого воина могло быть много детей, но ни один из них не имел той же стати или склонностей к битвам. Иные семьи поражала некая болезнь, причем она проявлялась из поколения в поколение в каком-то случайном порядке, ею страдали одни потомки и не болели другие. Почему у индивидуумов проявляются или, чаще, не проявляются определенные физические черты родителей и даже более дальних родственников? Одни и те же вопросы задавали тысячи лет, и не только о нашем собственном виде, но и о скоте, посевных культурах, плодовых растениях, собаках и так далее.
На протяжении тысячелетий со времени зарождения земледелия и одомашнивания животных об этих тайнах появлялось много догадок. У Аристотеля было смутное представление о фундаментальных принципах, когда он писал, что в курином яйце заключено «понятие» цыпленка, а желудь «осведомлен» о том, как устроен дуб. В XVIII веке в результате развития знаний о растительном и животном разнообразии, а также систематики стали появляться новые идеи о наследственности. Дед Чарльза Дарвина, Эразм Дарвин (1731–1802), могучая интеллектуальная сила в Англии XVIII века, сформулировал одну из первых формальных теорий эволюции в первом томе «Зоономии, или Законов органической жизни»{45} (1794–1796), где он сказал, что «все живые животные произошли от одного живого волокна». Классическая генетика в том виде, как мы ее понимаем, началась в 1850-х и 1860-х, когда моравский монах Грегор Мендель (1822–1884) попытался составить правила наследственности, по которым происходит гибридизация растений. Но лишь в последние семьдесят лет ученые сделали замечательное открытие, что «волокна» или «нити», которые предложил Эразм Дарвин, действительно используются для программирования каждого организма на планете с помощью молекулярных роботов.
До середины прошлого века большинство ученых считали, что нести генетическую информацию могут только белки. С учетом того, что жизнь так сложна, они полагали, что ДНК – полимер, состоящий всего из четырех химических единиц, – слишком проста по строению, чтобы передавать достаточно данных следующему поколению, и что это просто поддерживающая структура для белкового генетического материала. Белки же сделаны из двадцати разных аминокислот и имеют сложную первичную, вторичную, третичную и четвертичную структуры, а ДНК – это всего лишь полимерная нить. Только белки, которые окутывают хромосомы, казались достаточно сложными, чтобы работать как шрёдингеровский «апериодический кристалл», способный нести весь объем информации, которую следует передавать от клетки к клетке во время ее деления.
Это отношение начало меняться в 1944 году, когда были опубликованы подробности красивого простого эксперимента. Открытие, что именно ДНК, а не белок, настоящий носитель наследственной информации, было сделано Освальдом Эвери (1877–1955) в Рокфеллеровском университете в Нью-Йорке. Выделив вещество, которое могло менять некоторые свойства одного штамма бактерий на свойства другого в процессе, называемом трансформацией, он обнаружил, что полимер ДНК и был на самом деле тем «трансформирующим фактором», который придавал клеткам новые свойства.
Эвери, которому тогда было 65 лет и который уже собирался на пенсию, и его коллеги Колин Манро Маклеод и Маклин Маккарти повторили то же наблюдение, что почти на двадцать лет раньше сделал бактериолог Фредерик Гриффит (1879–1941) в Лондоне. Гриффит изучал пневмококк (Streptococcus pneumoniae) – бактерию, которая вызывает эпидемии пневмонии и существует в двух разных формах: R-форме, которая под микроскопом выглядит шершавой (rough) и незаразна, и S-форме, или smooth, гладкая, которая может вызывать смертельно опасную болезнь. У пациентов с пневмонией обнаруживались обе формы – R и S.
Гриффит задумался, не превращаются ли друг в друга летальная и безобидная формы бактерии. Чтобы ответить на этот вопрос, он придумал хитрый эксперимент, в котором колол мышам безвредные R-клетки вместе с S-клетками, предварительно убитыми нагревом. Можно было ожидать, что мыши выживут, поскольку когда им кололи только убитую вирулентную форму S, то грызуны выживали. Однако неожиданно, когда живая невирулентная форма R поступила вместе с мертвыми клетками формы S, мыши стали умирать. Из умерших мышей Гриффит получил живые клетки как R-, так и S-типа. Он рассудил, что некая субстанция из убитых нагревом S-клеток перешла в R-клетки и превратила их в S-форму. Поскольку это изменение наследовалось в поколениях бактерий, было сочтено, что этот фактор – генетический материал. Гриффит назвал этот процесс «трансформацией», хотя не имел представления об истинной природе «трансформирующего фактора».
Ответ появился почти через двадцать лет, когда Эвери с коллегами повторили эксперимент Гриффита и доказали методом исключения, что этот фактор – ДНК. Они поочередно убирали белок, РНК и ДНК, используя ферменты, которые переваривают лишь каждый отдельный компонент клетки: в данном случае это были протеазы, РНКазы и ДНКазы соответственно{46}. Последовавшая статья оказала действие, однако вовсе не сразу, потому что научное сообщество не торопилось расставаться с уверенностью в том, что для объяснения генетики необходима сложность белков. В книге «Нобелевские премии и науки о жизни» (2010) Эрлинг Норрби, бывший генеральный секретарь Шведской королевской академии наук, обсуждает, почему так неохотно принимали открытие Эвери: хотя работа его группы была убедительной, скептики приводили рассуждения, что всё равно была возможность, что трансформацию обеспечивали малые количества какого-то другого вещества, например устойчивого к протеазам белка{47}.
Тем временем большие успехи были достигнуты в изучении белков, в частности в 1949 году, когда британец Фредерик Сэнгер определил последовательность аминокислот в гормоне инсулине – замечательное достижение, за которое он будет награжден Нобелевской премией. Его работа показала, что белки – это не комбинация близкородственных веществ без единой структуры, а на самом деле одно вещество{48}. Сэнгер, которого я глубоко уважаю, без сомнения, один из самых виртуозных научных новаторов всех времен благодаря его особому вниманию к разработке новых методов{49}. («Из трех главных видов деятельности, из которых состоит научная работа – думать, говорить и делать, – я предпочитаю последний и, вероятно, умею это лучше всего. Я вполне справляюсь с думанием, но не очень хорошо говорю»{50}.) Его подход принес отличные дивиденды.
Идея, что нуклеиновые кислоты держат ключ к наследственности, постепенно начала преобладать в конце 1940-х и в начале 1950-х, когда были поставлены другие успешные эксперименты по трансформации – например, было показано, что РНК из вируса табачной мозаики сама по себе заразна. И все же признание, что ДНК – это наследственный материал, приходило медленно. Истинное значение экспериментов Эвери, Маклеода и Маккарти стало ясно только в следующем десятилетии, когда накопилось достаточно данных. Один из ключевых для данной гипотезы фактов был получен в 1952 году, когда Альфред Херши и Марта Коулз Чейз продемонстрировали, что ДНК – это генетический материал вируса, известного как бактериофаг Т2, способный заражать бактерии{51}. Значительно лучше стали понимать, что ДНК – это генетический материал, в 1953 году, когда ее структура была выявлена Уотсоном и Криком во время работы в Кембридже (Англия). Предыдущие исследования установили, что ДНК состоит из кирпичиков, называемых нуклеотидами. Каждый нуклеотид состоит из сахара-дезоксирибозы, фосфатной группы и одного из четырех азотистых оснований – аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц). Фосфаты и сахара соседних нуклеотидов сцепляются и образуют длинный полимер. Уотсон и Крик установили, как эти детали соединяются вместе в элегантную трехмерную структуру.
Чтобы достичь этого, они использовали критически важные данные, полученные другими учеными. От Эрвина Чаргаффа они узнали, что четыре разных химических основания в ДНК обнаруживаются парами, что чрезвычайно важно, когда дело доходит до понимания «ступенек», из которых состоит лестница жизни. (В мою коллекцию по истории науки в моем бесприбыльном Институте Крейга Вентера входит лабораторный блокнот Крика того времени, где записаны неудачные попытки повторить эксперимент Чаргаффа.) Они получили ключ к решению от Мориса Уилкинса, который первым поразил Уотсона своими новаторскими рентгеновскими исследованиями ДНК, и Розалинд Франклин. На фото № 51 (также экспонат коллекции в Институте Вентера), сделанном Рэймондом Гослингом в мае 1952 года, видны черные перекрещенные отражения, которые оказались ключом к молекулярной структуре ДНК, выявляющие, что это двойная спираль, в которой буквы текста ДНК соответствуют перекладинам{52}.
25 апреля 1953 года статья Уотсона и Крика «Молекулярная структура нуклеиновых кислот: структура дезоксирибонуклеиновой кислоты»{53} вышла в Nature. Спиральная структура ДНК стала прозрением, «намного красивее, чем мы ожидали», пояснил Уотсон, потому что комплементарная природа букв – то есть составляющих ее нуклеотидов – ДНК (буква А всегда стоит в паре с Т, а Ц с Г) сразу же показала, как копируются гены при делении клетки. Хотя это был давно искомый механизм наследственности, реакция на статью Уотсона и Крика была далека от немедленной. Но признание в конце концов пришло, и через девять лет Уотсон, Крик и Уилкинс поделили Нобелевскую премию по физиологии и медицине 1962 года «за их открытия молекулярной структуры нуклеиновых кислот и ее значения для передачи информации в живой материи».
Однако двое ученых, предоставивших важнейшие данные, не были включены в число лауреатов: Эрвин Чаргафф (и он был обижен и озлоблен до конца своих дней){54}, и Розалинд Франклин, умершая в 1958-м, в 37 лет от рака яичников. Освальд Эвери несколько раз номинировался на Нобелевскую премию, но он умер в 1955 году, до того, как признание его достижений стало достаточным, чтобы его наградить. Эрлинг Норрби приводит слова Горана Лильестранда, секретаря Нобелевского комитета Каролинского института, из его обзора 1970 года по Нобелевским премиям по физиологии и медицине: «Открытие Эвери в 1944 году роли ДНК как носителя наследственности представляет собой одно из самых важных достижений в генетике, и достойно сожаления, что он не получил Нобелевской премии. К тому времени, как утихли голоса несогласных, он уже умер»{55}.
История Эвери иллюстрирует, что даже в академической среде, где должен господствовать рациональный, основанный на доказательствах научный взгляд, вера в конкретную теорию или гипотезу может ослеплять ученых годами и даже десятилетиями. Эксперименты Эвери, Маклеода и Маккарти были так просты и элегантны, что их легко можно было повторить; для меня остается загадкой, почему этого не сделали раньше. Наука отличается от других областей приложения усилий тем, что старые идеи отпадают, когда набирается достаточно много противоречащих им данных. Но, к несчастью, этот процесс занимает время.
Жизнь клетки на самом деле зависит от двух типов нуклеиновых кислот: дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК). Современная теория считает, что жизнь началась в мире РНК, потому что она более универсальна, чем ДНК. РНК играет двойную роль – как носителя информации, так и фермента (рибозим), способного катализировать химические реакции. Как и ДНК, РНК состоит из линейной последовательности химических букв. Три из этих букв – А, Ц и Г – те же, что и в ДНК, а вместо тимина (Т) в РНК входит урацил (У). Ц всегда связывается с Г; А связывается только с Т или У. Так же как в ДНК, одиночная цепочка РНК может соединиться с другой цепочкой, состоящей из комплементарных букв. Уотсон и Крик предположили, что РНК – это копия записи ДНК в хромосоме, переносящая эту запись в рибосому, где производятся белки. Программа ДНК транскрибируется, т. е. переписывается в виде молекулы информационной (матричной) РНК (мРНК). В цитоплазме текст мРНК транслируется (т. е. «переводится») в белки.
Только в 1960-х ДНК была наконец широко признана «главным» генетическим материалом, но потребовались работы Маршалла Уоррена Ниренберга (1927–2010) в Национальных институтах здравоохранения (НИЗ) в Бетесде (Мэриленд) и уроженца Индии Хара Гобинда Кораны (1922–2011) в Университете Висконсина в Мэдисоне, чтобы действительно расшифровать генетический код, используя синтетические нуклеиновые кислоты. Они обнаружили, что ДНК использует свои четыре разных типа оснований наборами по три – так называемыми кодонами, чтобы обозначить каждую из двадцати разных аминокислот, используемых клетками для производства белков. Этот триплетный код, таким образом, дает шестьдесят четыре возможных кодона, часть которых служит знаками препинания (стоп-кодоны), обозначающими конец белковой последовательности. Роберт Холли (1922–1993) из Корнелла выяснил структуру другого вида РНК, называемого транспортной (тРНК), которая переносит определенные аминокислоты к великолепной молекулярной машине – рибосоме, где они собираются в белки. За эти многое прояснившие работы Ниренберг, Корана и Холли в 1968 году поделили Нобелевскую премию.
Мне повезло в разное время встречаться со всеми троими, но, работая в Национальных институтах здравоохранения, я особенно хорошо знал Маршалла Ниренберга. Его лаборатория и офис были этажом ниже моих в строении 36 обширного кампуса НИЗ, и я часто заходил к нему, когда только начинал заниматься секвенированием ДНК и геномикой. Открытый, доброжелательный человек, глубоко интересовавшийся всеми областями науки, он всегда увлекался новыми технологиями – до самой своей смерти. Открытие им совместно с Кораной генетического кода будут помнить как одно из самых значительных в науках о живом, так как оно объясняет, как линейный полимер ДНК кодирует линейную последовательность аминокислот в белках. Это основной принцип «центральной догмы» молекулярной биологии: информация переходит от нуклеиновых кислот к белкам.
1960-е стали началом молекулярно-биологической революции отчасти благодаря появлению возможности монтировать ДНК с помощью рестриктаз. Рестриктазы были независимо открыты Вернером Арбером в Женеве и Хэмилтоном О. Смитом, работавшим в Балтиморе. Хэм Смит, мой старый друг и сотрудник, опубликовал в 1970 году две важных статьи, описывающие рестрикционный фермент, полученный из бактерии Haemophilus influenzae. Один из ключевых биохимических механизмов, применяемых бактериями для защиты от чужой ДНК, – это ферменты, которые могут быстро нарезать на кусочки попавшую в клетку чужеродную ДНК, разрезая цепочку только в тех местах, где есть строго определенные последовательности нуклеотидов. Дэниэл Натанс, работавший со Смитом в Балтиморе, первым применил рестриктазы для «генетической дактилоскопии» и картирования. Эти ферменты позволяют ученым манипулировать с ДНК так же, как вырезают и вставляют фрагменты текста на экране компьютера. Способность резать генетический материал точно по известным местам – это основа всей генной инженерии и генетической экспертизы по ДНК. Эта экспертиза революционизировала криминалистику и идентификацию преступников по ДНК, оставленной на месте преступления, к примеру, в виде волос, кожи, спермы или слюны, отпечатков пальцев. Смит, Натанс и Арбер разделили в 1978-м Нобелевку за свои открытия: без них молекулярная инженерия могла и не возникнуть.
Семидесятые годы ХХ века принесли начало генно-инженерной революции – потенциально столь же глубокого изменения, как зарождение сельского хозяйства в неолите. Когда ДНК из одного организма искусственно помещают в геном другого и затем она воспроизводится и используется этим другим организмом, это называется рекомбинантной ДНК. Внедрение этой технологии было по большей части работой Пола Берга, Герберта Бойера и Стенли Нормана Коэна. Работая в Стэнфорде, Берг задумался, возможно ли вставить чужие гены в вирус, таким образом создав «переносчика», которого можно использовать, чтобы перенести эти гены в новые клетки. Его выдающийся эксперимент 1971 года состоял во внедрении участка ДНК бактериального вируса, известного как лямбда, в ДНК обезьяньего вируса SV40{56}.
Берг получил за эту работу свою долю Нобелевской премии 1980 года по химии, но он не сделал следующий шаг – не поместил рекомбинантную ДНК в животных. Первое трансгенное млекопитающее было создано в 1974 году Рудольфом Дженишем и Беатрис Минц, поместившими чужеродную ДНК в мышиный эмбрион{57}. Когда в обществе стало расти беспокойство на тему потенциальной опасности таких экспериментов, Берг сыграл активную роль в обсуждении того, насколько сдержаны и ограничены должны быть подобные разработки. В 1974 году группа американских ученых предложила мораторий на эти исследования. На очень представительной встрече, организованной в следующем году Бергом в отеле Asilomar Conference Grounds в Пасифик Гроув (Калифорния), были обозначены добровольные границы. Кое-кто опасался, что эти рекомбинантные организмы могут оказаться непредсказуемыми, болезнетворными и смертоносными, что они могут утечь из лабораторий и распространиться. Противовес этим страхам составляли аргументы в поддержку генетической инженерии, особенно те, что высказал Джошуа Ледерберг, профессор из Стэнфорда и нобелевский лауреат{58}. В 1976 году Национальные институты здравоохранения выпустили свои рекомендации по безопасному проведению исследований рекомбинантной ДНК, отзвуки которых до сих пор слышны в продолжающихся спорах о генно-модифицированных сельскохозяйственных растениях и в совсем недавних дискуссиях об использовании во благо и во зло исследований генетики гриппа.
После эксперимента Берга по внедрению генов в 1971 году следующим шагом вперед в молекулярном клонировании стала вставка ДНК бактерии одного вида в бактерию другого, где она воспроизводилась при каждом делении. Этот шаг сделали в 1972 году Бойер из Калифорнийского университета в Сан-Франциско и Коэн из Стэнфордского университета. Их исследование, в котором ДНК стафилококка была размножена в Escherichia coli (самой многочисленной бактерии человеческого кишечника), установило, что генетический материал может действительно перемещаться между видами, опровергнув таким образом долго державшееся представление. Еще большим триумфом межвидового клонирования было отмечено введение в E. coli генов южноафриканской шпорцевой лягушки Xenopus, популярного лабораторного животного. Несмотря на общественные опасения, быстро возникло довольно много компаний по разработке технологии рекомбинантной ДНК.
На переднем крае биотехнологической революции была компания «Генентек», основанная в 1976 году Бойером и венчурным инвестором Робертом А. Суонсоном. В следующем году, еще до того, как «Генентек» переехал в собственные помещения, Бойер и Кеиити Итакура в медицинском центре «Город надежды» (City of Hope) в Дуарте (Калифорния), работая с Артуром Риггзом, использовали технологию рекомбинантной ДНК, чтобы получить от E. coli человеческий белок соматостатин (который играет существенную роль в регуляции гормона роста). После этой вехи они обратились к более сложной молекуле – инсулину. Если бы им удалось заменить свиной инсулин, который тогда использовался для лечения диабета, это открыло бы огромный потенциальный рынок. Компания «Эли Лилли» подписала соглашение о совместном предприятии с «Генентеком» по разработке производственного процесса, и в 1982 году рекомбинантный инсулин под брендовым названием Humulin стал первым биотехнологическим продуктом, появившимся на рынке. К тому времени у «Генентека» было много соперников, включая некоторое количество мелких стартапов, поддерживаемых крупными фармацевтическими компаниями.
От этих первых открытий молекулярная биология стремительно разрослась до области, в которой практикуются все университеты мира и которая стала основой для многомиллиардного бизнеса, производящего наборы, тесты, реагенты, научное оборудование. Клонированы или клонируются и ежедневно изучаются гены едва ли не любых видов, включая бактерии, дрожжи, растения и млекопитающих. В исследовательских лабораториях и биотехнологических компаниях создаются метаболические пути, побуждающие клетки производить продукты в спектре от фармацевтики до еды, промышленных химикатов и энергоносителей.
Одновременно с этим прорывом в понимании «программного обеспечения» жизни – ДНК – значительно продвинулось и описание ее «аппаратной части» – белков. Белки – это базовые строительные блоки клетки, фундаментальной структурной единицы всех известных живых существ, от единственной клетки бактерии до тех ста триллионов, из которых состоит человеческое тело. Как упоминалось выше, мир клетки впервые был обнаружен Робертом Гуком, о котором некоторые говорят как об английском Леонардо да Винчи. Гук был первым британским ученым, показавшим, как экспериментальный метод с применением инструментов реально работает и приносит нарастающее знание. В своем шедевре Micrographia{59} (1665) Гук описал клетки (само слово cell происходит от латинского cellula – «ячейка»), разглядев сотовую структуру среза пробки под микроскопом. Каждое живое существо на земле состоит из клеток, окруженных мембраной, которая создает изолированный внутренний объем. Там находится генетический материал и клеточные механизмы для его репликации.
Первые двадцать лет ХХ века в микробиологии в попытках идентифицировать молекулярную основу этой «аппаратной части» господствовала так называемая «коллоидная теория». В то время не было четких доказательств существования больших молекул, и «биоколлоидисты» утверждали, что антитела, ферменты и все такое прочее на самом деле состоят из коллоидов, то есть разнообразных смесей маленьких молекул{60}. В центре их внимания были не гигантские органические молекулы, удерживаемые вместе сильными ковалентными связями, а агрегации мелких молекул, удерживаемых вместе относительно слабыми связями. В начале 1920-х, однако, эта точка зрения пошатнулась благодаря немецкому химику-органику Херманну Штаудингеру (1881–1965), который показал, что такие большие молекулы, как крахмал, целлюлоза и белки, на самом деле представляют собой длинные цепочки из коротких повторяющихся молекулярных блоков, удерживаемых вместе ковалентными связями. Однако поначалу представление Штаудингера о том, что он называл Makromoleküle (макромолекулы), встретило почти всеобщее неприятие. Макромолекулярная теория была отвергнута даже коллегами Штаудингера по Швейцарской высшей технической школе (ETH) в Цюрихе, где он был профессором, пока не переехал в 1926-м во Фрайбург. И только в 1953-м (в год открытия двойной спирали) Штаудингер наконец получил Нобелевскую премию за свой весомый вклад в науку.
В последние годы мы пришли к тому, что рассматриваем клетку, эту основную единицу жизни, как фабрику, взаимосвязанный ряд сборочных линий, движимых белковыми машинами{61}, созданными эволюцией за тысячи, миллионы или даже миллиарды лет для выполнения специальных задач. Эта модель отмечает возрождение идеи, имевшей хождение в XVII веке, прежде всего в трудах Марчелло Мальпиги (1628–1694), итальянского врача, одного из первых микроскопистов{62}. Мальпиги предположил, что телесными функциями управляют крохотные «органические машинки».
Теперь мы знаем, что это белки, образующие множество различных классов. Катализаторы, например, ускоряют огромное разнообразие химических реакций, а фиброзные белки вроде коллагена – это главный структурный элемент, четверть всех белков, найденных у позвоночных, то есть животных со спинным хребтом, включая млекопитающих. Эластин, напоминающий резину, составляет основу легочной ткани и стенок артерий. Мембраны вокруг наших клеток содержат белки, которые помогают вводить и выводить молекулы в клетку и из клетки и участвуют в клеточной коммуникации; глобулярные белки связывают, преобразуют и выпускают химические вещества. И так далее.
Последовательность ДНК непосредственно кодирует структуру каждого белка, определяющую его активность. Генетический текст определяет линейную последовательность аминокислот, которая в свою очередь определяет сложную трехмерную структуру окончательного белка. После синтеза эта линейная полипептидная цепочка складывается в свою характерную форму: некоторые части образуют пластины, другие – стопки, складки, завитушки, закручиваются в спирали и в другие сложные конфигурации, которыми определяется работа механизма. Некоторые части белковой машины гибкие, другие – жесткие. Некоторые белки – это сборочные узлы, части большей трехмерной белковой машины.
Давайте посмотрим на АТФ-синтетазу как на один из примечательных и ярких примеров молекулярной машины. Этот фермент, в двести тысяч раз меньше булавочной головки, сделан из тридцати одного белка и, вращаясь с частотой 60 раз в секунду, способен создавать энергетическую валюту клеток – молекулу аденозинтрифосфата, или АТФ. Вы не смогли бы двигаться, думать или дышать без этого механизма. Другие белки – это моторы, как динеин, за счет которого движется сперматозоид; миозин, который движет мышцами; и кинезин, который «ходит» на паре ножек (когда присоединяется топливо в виде АТФ, одна ножка отгибается и шлепает вокруг, пока не зацепится, чтобы сделать следующий шаг) и имеет хвост, чтобы возить грузы по клеткам. Некоторые из этих транспортных роботов приспособлены для перемещения только одного вида груза: таков гемоглобин, который состоит из четырех белковых цепочек – двух альфа и двух бета, каждая из которых располагает кольцеобразной группой гема, в центре которой находится атом железа, чтобы разносить кислород по всему телу. Железо обычно крепко сцепляется с кислородом, но этот созданный эволюцией механизм обеспечивает обратимую связь молекулы кислорода с каждым из четырех гемов в каждой молекуле гемоглобина.
Светопоглощающий пигмент – это секрет одной из самых важных на свете машин, той, которая управляет экономикой жизни океанов и поверхности планеты. Хотя разные виды растений, водорослей и бактерий развили различные механизмы для запасания световой энергии, у них у всех есть структура, называемая фотохимическим реакционным центром. Там можно найти белки-антенны, включающие в себя несколько молекул светопоглощающего пигмента хлорофилла. Они улавливают солнечный свет в виде частиц света – фотонов, а потом проводят их энергию через серию молекул в реакционный центр, где она используется для чрезвычайно эффективного превращения углекислоты в сахара. Фотосинтетические процессы происходят в местах, настолько плотно набитых пигментными молекулами, что там вступают в игру квантово-механические процессы{63}. (Самая головокружительная ветвь физики, квантовая механика – разработанная в числе других Эрвином Шрёдингером, – имеет дело с микроскопическими явлениями.) Это одна из нескольких квантовых машин, используемых живыми существами в зрении, электронном и протонном туннелировании, обонянии и магниторецепции{64}. Это выдающееся открытие – еще одно доказательство идей Шрёдингера, который также рассматривал возможность того, что квантовые флюктуации играют роль в биологии{65}.
Каждая молекулярная машина создана эволюцией для автоматического выполнения очень специфической задачи, от восприятия зрительных образов до сгибания мышц. Вот почему можно думать о них как о маленьких роботах. Как писали Чарльз Тэнфорд и Жаклин Рейнольдс в книге «Природные роботы» (2001), «у него нет сознания; он не управляется разумом или высшим центром. Всё, что делает белок, заложено в его линейный текст, производный от текста ДНК».
Самый важный прорыв в молекулярной биологии после открытия генетического кода был в определении деталей главного робота – рибосомы, которая занимается синтезом белка и таким образом направляет производство всех остальных клеточных роботов. Молекулярные биологи десятки лет знали, что в рибосоме сосредоточен центр всех танцев с производством белков. Чтобы функционировать, рибосоме нужны две вещи: матричная РНК (мРНК), инструкция по изготовлению белка, скопированная из хранилища генетической информации в клетке – с ДНК; и транспортная РНК (тРНК), которая приносит на хвосте аминокислоты, используемые для создания белка. Рибосома кодон за кодоном считывает последовательность с мРНК и к каждому кодону подбирает тРНК с соответствующим антикодоном, выстраивая их груз – аминокислоты – в правильном порядке. Рибосома также действует как катализатор-рибозим: соединяет аминокислоты ковалентной химической связью, добавляя их тем самым к растущей белковой цепочке. Синтез прекращается, когда в последовательности РНК появляется кодон «стоп», но после этого полимер из аминокислот должен еще сложиться в нужную трехмерную структуру, чтобы стать биологически активным белком.
Бактериальные клетки содержат около тысячи рибосомных комплексов, что позволяет им непрерывно синтезировать белок – как для замены деградировавших белковых молекул, так и для изготовления новых для дочерних клеток во время деления. Рибосому можно рассматривать под электронным микроскопом и видеть, как она изгибается и меняет форму в ходе работы. Проворот храповика{66} в глубине рибосомы – ключевой момент белкового синтеза. Весь синтез белка происходит чрезвычайно быстро: сборка цепочки длиной около ста аминокислот занимает секунды.
Как и в случае двойной спирали, выявить подробности строения рибосомы удалось с помощью рентгеновской кристаллографии. Сначала, однако, надо было заставить рибосомы кристаллизоваться – как кристаллизуется из раствора соль, когда выпаривается вода, – чтобы получить хорошо организованные кристаллы из миллионов рибосом, собранных в правильные структуры, которые можно изучать с помощью рентгеновских лучей. Ключевое открытие было сделано в 1980-х, когда Ада И. Йонат в Израиле в содружестве с Хайнцем-Гюнтером Виттманом в Берлине вырастили кристаллы из бактериальных рибосом, выделенных из микроорганизмов горячих источников и Мертвого моря. Секреты бактериальной рибосомы были раскрыты в 2005 году, а строение эукариотной – дрожжевой – рибосомы в высоком (трехангстремном) разрешении было опубликовано французской группой в декабре 2011 года[6].
Бактериальная рибосома состоит из двух крупных частей, называемых 30S и 50S субъединицами, которые расходятся и сходятся во время работы. Меньшая субъединица 30S – это часть рибосомы, которая считывает генетический код; в большей, 50S, собственно делаются белки. Субъединица 30S изучена с точностью до атома Йонат и независимо – Венкатраманом Рамакришнаном в Лаборатории молекулярной биологии Совета по медицинским исследованиям в Кембридже (Англия). Они, например, открыли «акцепторный участок», часть субъединицы 30S, который распознает и отслеживает точность соответствия между матричной и транспортной РНК. Детали молекулярного строения показывают, как рибосома выполняет спаривание двух первых букв кодона: молекулы тычутся, пока не «ощутят» желобок в двойной спирали из хорошо подогнанных РНК, чтобы гарантировать, что код прочитывается с высокой достоверностью. При проверке третьей буквы в тройке, соответствующей конкретной аминокислоте, этот механизм оказывается менее строгим из-за неоднозначности кода. Это совпадает с наблюдением, что конкретной тРНК – и аминокислоте на ней – может соответствовать не одна тройка нуклеотидов мРНК. Например, аминокислоту фенилаланин может кодировать как тройка УУУ, так и УУЦ.
Кроме того, Гарри Ф. Ноллер из Калифорнийского университета в Санта-Крусе (начинавший свое исследование, будучи очарован тем, как двигаются молекулы) в 1999 году опубликовал первые подробные изображения целой рибосомы, а потом, в 2001-м, дополнил их еще более тонкими деталями. Его работа показала, как формируются и распадаются молекулярные мостики во время этой операции{67}. Рибосомная машина содержит пружины сжатия и кручения, сделанные из РНК, чтобы держать субъединицы вместе, когда они смещаются и проворачиваются относительно друг друга. Ее малая субъединица, двигаясь вдоль матричной РНК, связывается с транспортной РНК, у которой на одном конце свободный антикодон, а на другом – аминокислота. Аминокислоты связываются вместе в белок большой субъединицей, которая тоже связывается с транспортной РНК. Таким образом рибосома может пропускать через свой центр по 15 груженных аминокислотами молекул РНК в секунду, координируя присоединение новых звеньев к растущему белку.
На нарушении этих функций бактериальных рибосом основано действие многих антибиотиков. К счастью, хотя бактериальные и человеческие рибосомы похожи, они достаточно различаются, чтобы антибиотики могли связаться с бактериальными рибосомами и блокировать их эффективнее, чем человеческие. Все аминогликозиды – тетрациклин, хлорамфеникол, эритромицин – работают, убивая бактериальные клетки вмешательством в работу рибосом.
Йонат, Рамакришнан и Томас А. Стейтц поделили Нобелевскую премию 2009 года по химии за свои опыты по выяснению, как работает эта чудесная машина.
По мере развития геномики роль РНК выглядела все более важной. Согласно центральной догме, РНК – всего лишь посредник, обеспечивающий выполнение команд, зашифрованных в ДНК. В этой модели двойная спираль ДНК расплетается, и ее генетическая информация копируется на одноцепочечную мРНК. В свою очередь мРНК переносит ее от генома к рибосомам. Общепринятым также было мнение, что ДНК, не кодирующая белки, – это «мусорная» ДНК. Оба представления изменились в 1998 году, когда Эндрю Файр из Института Карнеги в Вашингтоне, Крейг Кэмерон Мелло из Массачусетского университета и их коллеги опубликовали свидетельства того, что двухцепочечная РНК, снятая с некодирующей ДНК, может быть использована, чтобы отключать определенные гены, – что помогло объяснить некоторые озадачивающие явления, наблюдающиеся, например, у петуний{68}. Теперь стало ясно, что некоторые участки ДНК кодируют короткие молекулы РНК – молекулярные выключатели, играющие ключевую роль в том, как и насколько интенсивно используются гены. Вся информация в живой клетке в конечном счете заключена в определенном порядке нуклеотидов и аминокислот – в ДНК, РНК и белках. Поддержание этой чрезвычайной упорядоченности в геноме определяется священными законами термодинамики. Чтобы молекулярные машины могли обуздать тепловое движение, надо затратить химическую энергию. Клетки также требуют постоянных затрат этой энергии, чтобы образовывать ковалентные связи между молекулами, а также для выстраивания этих молекул в правильном порядке или последовательности. Посреди этой бури химического хаоса лежит относительно неколебимый набор инструкций, закодированных в ДНК.
Обсуждая механизм кодирования наследственной информации, Шрёдингер имел причину говорить об «апериодическом кристалле»: он хотел подчеркнуть надежность хранения наследственной информации и использовал термин «кристалл», чтобы «объяснить постоянство гена». Совсем другое дело – белковые роботы, закодированные в наших генах, нестабильные и быстро ломающиеся. Продолжительность жизни любого белка лежит в интервале от секунд до дней. Им приходится выдерживать суету в клетке, где тепловая энергия заставляет молекулы биться друг о друга. Белки также могут складываться в неактивные и часто ядовитые скопления – на чем основаны некоторые хорошо известные болезни.
В каждый конкретный момент человеческая клетка обычно содержит тысячи разных белков, производя одни и избавляясь от других по мере надобности для поддержания своего благополучия. Недавние исследования ста белков в человеческих раковых клетках{69} показали, что период полураспада белков составляет от 45 минут до 22,5 часа. Сменяются и сами клетки. Каждый день в человеческом организме умирает 500 миллиардов кровяных клеток. Предполагается, что в ходе нормального развития любого органа умирает половина составляющих его клеток. У нас каждый день слущивается около 500 миллионов клеток кожи. В результате вы сбрасываете весь ваш внешний слой кожи каждые две-четыре недели. Пыль, которая накапливается у вас дома – это вы. Если вы не будете постоянно создавать новые белки и клетки, вы умрете. Жизнь – это процесс постоянного обновления. Без нашей ДНК, без программ жизни, клетки очень быстро гибнут, а с ними и весь организм.
То, что линейные цепочки аминокислот, определенные генетическим текстом, складываются в характерные формы, чтобы выполнять свои особые функции, кажется на первый взгляд почти что чудом. Не все правила, определяющие складывание белков, уже поняты, что неудивительно, если учесть, что типичная цепочка из аминокислот (полипептид) имеет от миллионов до триллионов возможных конфигураций сложения. Чтобы вычислить все возможные конформации любого белка до предсказуемого термодинамически стабильного состояния, Лоуренсовская национальная лаборатория в Ливерморе объединила усилия с IBM, породив Blue Gene – линию суперкомпьютеров, которые могут выполнять около триллиона операций с плавающей запятой в секунду (то есть имеют мощность в один петафлопс).
Белок из сотни аминокислот может складываться множеством способов, так что количество различных структур составляет от 2100 до 10100 возможных конформаций. Чтобы испробовать все возможные конформации для каждого белка, понадобилось бы примерно 10 миллиардов лет. Но в линейную последовательность белкового текста встроены инструкции по складыванию, которые в свою очередь определены линейным генетическим текстом. В результате с помощью броуновского движения – постоянного движения молекул, вызываемого тепловой энергией, – эти процессы происходят очень быстро – за несколько тысячных секунды. Это обеспечивается тем, что правильно сложившийся белок имеет самую низкую возможную свободную энергию. И так же, как вода стекает в самую нижнюю точку, белок естественно принимает свою предпочтительную форму.
Правильно сложенная конформация – та, которая гарантирует, что фермент может правильно работать, – включает переход от высокой степени энтропии и свободной энергии к термодинамически стабильному состоянию сниженной энтропии и свободной энергии. У белка, называемого виллин, этот процесс можно даже наблюдать благодаря компьютерной симуляции{70}. Растягивая действие реальной продолжительностью в шесть миллионных секунды до нескольких секунд, симуляция показывает, как тепловая энергия заставляет трястись исходную линейную цепочку из восьмидесяти семи аминокислот; линейный белок дергается туда-сюда и всего за шесть микросекунд проходит через множество разных конформаций на пути к окончательной форме. Представьте, сколько актов эволюционного отбора ушло на этот дерганый танец, учитывая, что аминокислотная последовательность белка определяет не только тип его свертывания, но и его окончательную структуру – и, следовательно, его функцию.
Соревнование между «правильными» и потенциально вредными вариантами складывания белков довольно быстро привело к появлению «контроля качества» клеточных белков в виде другой группы специализированных молекулярных машин. Эти «молекулярные дуэньи» – шапероны – помогают белкам складываться и препятствуют образованию вредных агрегаций, а также разбирают агрегации, которые уже сформировались. Так, например, шапероны Hsp70 и Hsp100 разбирают агрегации, а Hsp60 состоит из разных белков, которые образуют что-то вроде бочонка с крышкой, чтобы, находясь внутри, несложившийся белок мог принять правильную форму. Неудивительно, что нарушение функционирования шаперонов лежит в основе многих нейродегенеративных заболеваний и форм рака.
Самая частая у европеоидов наследственная болезнь из тех, что определяются одним геном (в США она поражает одного новорожденного из 3500), – муковисцидоз, пример неправильно складывающегося, неверно ведущего себя белка. Он вызывается дефектом в гене, который отвечает за белок, называемый муковисцидозный трансмембранный регулятор проводимости (CFTR). Этот белок регулирует транспорт хлорид-иона сквозь клеточную мембрану; его изъяны приводят к разнообразным симптомам. Например, дисбаланс воды и соли у пациентов с муковисцидозом приводит к тому, что их легкие забивает липкая слизь, которая к тому же становится средой для роста болезнетворных бактерий. Повреждение легких из-за постоянных инфекций – главная причина смерти людей с этой болезнью. Не так давно ученые показали{71}, что по большей части в основе муковисцидоза лежит самая обычная мутация, мешающая отделению транспортного белка от одного из его шаперонов. В результате последние этапы нормального складывания не проходят, и активный белок не производится в должном количестве.
Разрушение скоплений белка и белковых фрагментов жизненно важно, потому что эти субстанции могут образовывать пробки или бляшки, которые очень токсичны. Когда при забастовке мусорщиков прекращается вывоз отходов, на улицах растут горы зловонных отбросов, уличное движение замедляется, растет риск болезней, и город быстро выходит из строя. То же верно для клеток и органов. Болезнь Альцгеймера, дрожь паркинсоника и неотвратимое ухудшение при болезни Крёйцфельда-Якоба (человеческая форма коровьего бешенства) – все это происходит из-за накопления токсичных нерастворимых белковых агрегаций.
Некоторые белковые машины приспособлены для исправления ошибок при синтезе и сборке белков. Протеасомы отвечают за ликвидацию ненормальных белков путем протеолиза – реакции разрывания белковых связей, выполняемой ферментами протеиназами. Эта машина представляет собой цилиндрический комплекс, средняя часть которого состоит из четырех колец, подобно стопке бубликов, каждый бублик сделан из семи белковых молекул. Предназначенные для ликвидации в протеасоме белки-мишени помечаются молекулами убиквитина – маленького белка, присутствующего по всей клетке. Примерно тридцать лет назад этот базовый механизм избавления клетки от отходов был выявлен тремя учеными: Аароном Чехановером, Аврамом Хершко и Ирвином А. Роузом; в 2004 году они получили за это Нобелевскую премию.
Продолжительность жизни каждого белкового робота в клетке генетически запрограммирована. Действие этой программы слегка отличается в разных ветвях жизни. Например, и E. coli, и дрожжевые клетки содержат фермент бета-галактозидазу, которая помогает расщеплять сложные сахара; однако период полураспада этого фермента сильно зависит от аминокислоты на конце белка (N-концевой аминокислоты). Когда на N-конце бета-галактозидазы стоит аргинин, лизин или триптофан, время полураспада белка составляет 120 секунд у E. coli и 180 секунд у дрожжей. Если на том же месте стоит серин, валин или метионин, время полураспада значительно возрастает – более 10 часов у E. coli и более 30 часов у дрожжей. Это называется N-концевым правилом{72} пути деградации белка.
Нестабильность и недолговечность белков показывают, что и жизнь самих клеток была бы очень короткой, если бы клетки были просто мембранными мешочками – пузырьками – с белками, но без генетического материала. Все клетки умрут, если не смогут постоянно делать новые белки для замещения тех, что повреждены или неправильно сложены. Бактериальная клетка должна заново сделать все свои белки или умереть в течение часа или даже меньше. Это верно и для клеточных структур, таких как мембрана: круговорот фосфолипидных молекул и мембранных транспортеров таков, что, если они не будут постоянно пополняться новыми, мембрана лопнет и все содержимое клетки вытечет. При культивировании клеток в лаборатории применяют простой тест на жизнеспособность: определить, протекает ли их мембрана настолько, чтобы пропустить внутрь крупные частицы красителя. Если они могут проникнуть в клетки, те явно мертвы.
Другая белковая машинерия разлагает и разрушает старые или отказывающие клетки в многоклеточных организмах. Эта программируемая клеточная смерть – апоптоз – критически важная составляющая жизни и развития. Конечно, разборка чего-то настолько сложного, как клетка, требует чрезвычайно точной координации. Чтобы начать разрушение, апоптосома, белковый комплекс, прозванный «машина смерти о семи спицах», использует каскад каспаз – особой разновидности протеаз, т. е. ферментов, переваривающих белок. Эти каспазы ответственны за разборку главных клеточных белков, таких как белки цитоскелета, что приводит к характерным изменениям формы клеток, подвергающихся апоптозу. Другой признак апоптоза – это фрагментация ДНК. Каспазы играют важную роль в этом процессе, активируя фермент, расщепляющий ДНК, – ДНКазу. Кроме того, они ингибируют ферменты, ремонтирующие ДНК, разрушая структурные белки в ядре клетки.
Наши тела можно было бы представить как трехмерные белковые структуры, но постоянное обновление их компонентов делает эти структуры динамическими. Шрёдингер уловил это, когда говорил о «поразительном даре организма концентрировать в себе „поток порядка“, избегая тем самым распада в атомный хаос, – о „питье упорядоченности“ из подходящей окружающей среды».
И наконец, мы должны рассмотреть, что именно движет всей бешеной активностью и обновлением во всех и в каждой клетке. Если и был кандидат на жизненную силу для одушевления жизни, это то, что в 1827 году впервые заворожило Роберта Броуна (1773–1858), когда этот шотландский ботаник заинтересовался постоянными зигзагообразными движениями фрагментов пыльцевых зерен, феноменом, который назовут в его честь (если только вы не француз – они утверждают, что сходные наблюдения были изложены в 1828 году ботаником Адольфом-Теодором Броньяром, 1801–1876). Броуна озадачило то, что эти микроскопические движения происходили не от потоков жидкости, и не от испарения, и не от прочих очевидных причин. Сначала он подумал, что заметил «тайну жизни», но, обнаружив, что так же двигаются и минеральные крупицы, отмел это представление.
Первый существенный сдвиг в нашем нынешнем понимании того, чему стал свидетелем Броун, произошел более чем через 75 лет после его открытия, когда Альберт Эйнштейн (1879–1955) рассмотрел теоретически, как невидимые молекулы, из которых состоит вода, должны подпихивать плавающие в ней мелкие частицы. До статьи Эйнштейна 1905 года кое-кто из физиков (особенно Эрнст Мах, 1838–1916) все еще сомневался в физической реальности атомов и молекул. Модель Эйнштейна была в конце концов подтверждена точными экспериментами, проведенными в Париже Жаном Батистом Перреном (1870–1942), который в 1926 году был награжден за эту и другие работы Нобелевской премией.
Броуновское движение оказалось важным, когда дело дошло до понимания работы живых клеток. Многие жизненно важные компоненты клеток, такие как ДНК, намного больше отдельных атомов, но все же достаточно малы, чтобы их двигали постоянные удары окружающего моря атомов и молекул. Так что, хотя ДНК действительно имеет форму двойной спирали, благодаря силам хаотического броуновского движения это извивающаяся, сгибающаяся, кружащаяся спираль. Белковые роботы живых клеток способны складываться в свои правильные формы лишь потому, что их компоненты – это подвижные цепочки, пластинки и спирали, которые постоянно толкутся внутри защитной клеточной мембраны. Жизнь движется броуновским движением, начиная с кинезиновых грузовичков, которые тянут маленькие мешочки с веществами вдоль микротрубочек к вращающейся АТФ-синтетазе{73}. Критически важно, что броуновское движение зависит от температуры: слишком низкая – и движения не хватает; слишком высокая – и все структуры идут вразнос от бешеного движения. Поэтому жизнь может существовать только в узком спектре температур.
Внутри этого спектра в клетках постоянно происходит что-то вроде девятибалльного землетрясения. «Вам не нужно было бы даже нажимать на педали велосипеда: просто приделайте к колесу храповик, чтобы оно не могло крутиться назад, и тряситесь вперед», как говорили Джордж Остер и Хуньгун Ван с факультета молекулярной и клеточной биологии Калифорнийского университета в Беркли{74}. Белковые роботы совершают похожий трюк, используя храповики и рабочие такты для обуздания силы броуновского движения. Благодаря непрекращающемуся беспорядочному движению и вибрации молекул на коротких дистанциях очень быстро происходит диффузия, что позволяет происходить биологическим реакциям с малыми количествами реагентов в чрезвычайно тесных объемах большинства клеток.
Теперь, когда мы знаем, что линейный текст ДНК определяет строение белковых роботов и РНК, которые управляют нашими клетками, а их строение, в свою очередь, определяет их функции, следующий вопрос очевиден: как нам читать и понимать этот текст, чтобы мы могли понять программу жизни?