Читать книгу Мозг и душа. Как нервная деятельность формирует наш внутренний мир - Крис Фрит - Страница 14

Часть первая
Что стоит за иллюзиями нашего мозга

Оглавление

1. О чем нам может рассказать поврежденный мозг

Восприятие материального мира

Когда я учился в школе, химия давалась мне хуже всех предметов. Единственный научный факт, который я запомнил на уроках химии, касается одного трюка, которым можно воспользоваться на практикуме. Вам выдают много маленьких емкостей с белыми порошками, и вы должны установить, где какое вещество. Попробуйте их на вкус. Вещество, сладкое на вкус, будет ацетат свинца. Только не пробуйте слишком много!

Такой подход к химии свойствен многим простым людям. Его обычно применяют к содержимому тех баночек, что стоят в глубине кухонного шкафа. Если не можешь по виду сказать, что это, попробуй на вкус. Так мы и знакомимся с материальным миром. Мы исследуем его с помощью наших органов чувств.


Рис. 1.1. Сетчатка глаза, которая обеспечивает связь между светом и мозговой активностью

Сетчатка, расположенная в глубине глаза, содержит большое число специальных нейронов (фоторецепторов), активность которых меняется, когда на них падает свет. В середине сетчатки (в области центральной ямки) располагаются фоторецепторы-колбочки. Есть три типа колбочек, каждый из которых реагирует на свет с определенной длиной волны (красный, зеленый и синий). Вокруг центральной ямки расположены фоторецепторы-палочки, реагирующие на слабый свет любого цвета. Все эти клетки посылают по зрительному нерву сигналы в зрительную зону коры.


Отсюда следует, что, если наши органы чувств повреждены, это плохо сказывается на нашей способности исследовать материальный мир. Вполне вероятно, что вы близоруки[22]. Если я попрошу вас снять очки и посмотреть вокруг, вы не будете различать мелкие объекты, расположенные всего в паре метров от вас. Тут нет ничего удивительного. Именно наши органы чувств – глаза, уши, язык и другие – и обеспечивают связь между материальным миром и нашим сознанием. Наши глаза и уши, как видеокамера, собирают информацию[23] о материальном мире и передают ее сознанию. Если глаза или уши повреждены, эта информация не может передаваться должным образом. Такие повреждения затрудняют нам знакомство с окружающим миром.

Эта проблема окажется еще более интересной, если мы задумаемся, как информация от глаз достигает сознания. Давайте на минуту забудем про вопрос о том, каким образом электрическая активность фоторецепторов глаза[24] преобразуется в наше ощущение цвета, и ограничимся наблюдением, что информация от глаз (а также ушей, языка и других органов чувств) поступает в мозг. Отсюда следует, что повреждения мозга тоже могут затруднять знакомство с материальным миром.

Психика и мозг

Прежде чем мы начнем разбираться в том, как повреждения мозга могут сказываться на нашем восприятии окружающего мира, нужно немного подробнее рассмотреть связь между нашей психикой и мозгом. Эта связь должна быть тесной. Как мы узнали из пролога, всякий раз, когда мы представляем себе какое-нибудь лицо, у нас в мозгу активируется специальная область, связанная с восприятием лиц. В данном случае мы, зная о чисто психическом опыте, можем предугадать, какая область мозга будет при этом активироваться. Как мы вскоре убедимся, мозговые травмы могут оказывать глубокое воздействие на психику. Более того, зная, где именно был травмирован мозг, мы можем предугадать, как в результате этого изменилась психика пациента. Но эта связь между мозгом и психикой несовершенна. Это не взаимно однозначная связь. Некоторые изменения активности мозга могут никак не сказаться на психике.

С другой стороны, я глубоко убежден, что любые изменения психики связаны с изменениями активности мозга[25]. Я убежден в этом потому, что считаю, что всё, что происходит в моем внутреннем мире (психическая активность), вызывается мозговой активностью или, по крайней мере, зависит от нее[26].

Итак, если я прав в своем убеждении, последовательность событий должна выглядеть примерно так. Свет попадает на светочувствительные клетки (фоторецепторы) нашего глаза, и они посылают сигналы в мозг. Механизм этого явления уже неплохо известен. Затем возникающая в мозгу активность каким-то образом создает в нашем сознании ощущение цвета и формы. Механизм этого явления пока совершенно неизвестен. Но каким бы он ни был, мы можем сделать вывод, что в нашем сознании не может быть знаний об окружающем мире, никак не представленных в мозгу[27]. Всё, что мы знаем о мире, мы знаем благодаря мозгу. Поэтому, вероятно, нам незачем задаваться вопросом: “каким образом мы или наше сознание познаем окружающий мир? Вместо этого нужно задаться вопросом: каким образом наш мозг познаёт окружающий мир?”[28] Задаваясь вопросом о мозге, а не о сознании, мы можем на время отложить решение вопроса о том, как знания об окружающем мире попадают в наше сознание. К сожалению, этот трюк не работает. Чтобы узнать, что известно вашему мозгу об окружающем мире, я в первую очередь задал бы вам вопрос: “Что вы видите?” Я обращаюсь к вашему сознанию, чтобы узнать, что отображается в вашем мозгу. Как мы с вами убедимся, этот метод далеко не всегда надежен.

Когда мозг не знает

Из всех чувствительных систем мозга мы больше всего знаем о зрительной системе[29]. Видимая картина мира вначале отображается в нейронах, расположенных в глубине сетчатки. Получающееся при этом изображение перевернуто и зеркально отражено, совсем как картинка, возникающая внутри фотоаппарата: нейроны, расположенные на сетчатке вверху слева, отображают нижнюю правую часть поля зрения. Сетчатка посылает сигналы в первичную зрительную кору (V1[30]) в затылочной части мозга через таламус (зрительный бугор) – своеобразную ретрансляционную станцию, расположенную в глубине мозга. Отростки нейронов, передающие эти сигналы, частично перекрещиваются, так что левая сторона каждого глаза отображается в правом полушарии, а правая – в левом. “Фотографическое” изображение в первичной зрительной коре сохраняется[31], так что нейроны, расположенные в верхней части зрительной коры левого полушария? отображают нижнюю правую часть поля зрения.

Последствия повреждений первичной зрительной коры зависят от того, где именно произошла травма. Если поврежден верхний левый участок зрительной коры, то пациент, оказывается, неспособен видеть объекты, расположенные в нижней правой части поля зрения. В этой части поля зрения такие пациенты слепы.

Некоторые люди, страдающие от мигрени, время от времени перестают видеть какую-либо часть поля зрения, оттого что у них на какое-то время сокращается приток крови к зрительной зоне коры. Обычно этот симптом начинается с того, что в поле зрения возникает небольшой “слепой” участок, который постепенно разрастается. Этот участок часто бывает окружен мерцающей зигзагообразной линией, которую называют фортификационным спектром.


Рис. 1.2. Как сигналы передаются по нервам от сетчатки в зрительную зону коры

Сигнал о свете из левой стороны поля зрения поступает в правое полушарие. Мозг показан снизу.


Прежде чем информация из первичной зрительной коры будет передана дальше в мозг для следующего этапа обработки, полученное изображение раскладывается на составляющие, такие как информация о форме, цвете и движении. Эти составляющие зрительной информации передаются дальше в разные участки мозга. В редких случаях мозговые травмы могут затрагивать участки мозга, задействованные в обработке лишь одной из этих составляющих, в то время как остальные участки остаются неповрежденными. Если повреждена область, связанная с восприятием цвета (V4), человек видит мир бесцветным (такой синдром называется ахроматопсией, или цветовой слепотой). Все мы видели черно-белые фильмы и фотографии, поэтому не так уж сложно представить себе ощущения людей, страдающих этим синдромом. Намного сложнее представить себе мир человека, у которого повреждена зона, связанная со зрительным восприятием движения (V5). С течением времени видимые объекты, например машины, меняют свое положение в поле зрения – но при этом человеку не кажется, что они движутся (такой синдром называют акинетопсией). Это ощущение, вероятно, представляет собой нечто противоположное иллюзии водопада, которую я упоминал в прологе. При этой иллюзии, которую каждый из нас может испытать, объекты не меняют своего положения в поле зрения, но нам кажется, что они движутся.


Рис. 1.3. Как повреждения зрительной коры влияют на восприятие

Повреждения зрительной коры вызывают слепоту на определенных участках поля зрения. Потеря всей зрительной коры правого полушария вызывает слепоту на всей левой стороне поля зрения (гемиопия). Потеря небольшого участка в нижней половине зрительной коры правого полушария приводит к появлению слепого пятна в левой верхней половине поля зрения (скотома). Потеря всей нижней половины зрительной коры правого полушария вызывает слепоту на всей верхней половине левой стороны поля зрения (квадрантная гемианопсия).


Рис. 1.4. Развитие слепого пятна при мигрени по Карлу Лэшли

Симптом начинается с того, что в районе середины поля зрения возникает слепое пятно, которое затем постепенно увеличивается в размерах.


На следующем этапе обработки зрительной информации такие ее составляющие, как информация о форме и цвете, вновь совмещаются для распознавания находящихся в поле зрения объектов. Участки мозга, в которых это происходит, иногда оказываются повреждены, в то время как области, где проходят предыдущие этапы обработки зрительной информации, остаются неповрежденными. У людей с такими травмами могут быть проблемы с распознаванием видимых объектов. Они в состоянии видеть и описывать различные характеристики объекта, но не понимают, что это такое. Подобное нарушение способности узнавания называют агнозией[32]. При этом синдроме первичная зрительная информация продолжает поступать в мозг, но осмыслить ее человек уже не может. При одной из разновидностей этого синдрома люди не способны узнавать лица (это прозопагнозия, или агнозия на лица). Человек понимает, что видит пред собой лицо, но не может понять, чье оно. У таких людей повреждена область, связанная с восприятием лиц, о которой я рассказывал в прологе.

Кажется, что с этими наблюдениями все ясно. Повреждения мозга затрудняют передачу информации об окружающем мире, собираемой органами чувств. Характер воздействия этих повреждений на нашу способность познавать окружающий мир определяется тем этапом передачи информации, на котором сказывается повреждение. Но иногда наш мозг может играть с нами странные шутки.

Когда мозг знает, но не хочет сказать

Мечта всякого нейрофизиолога[33] – найти человека, у которого был бы столь необычный взгляд на мир, что нам пришлось бы кардинально пересмотреть свои представления о работе мозга. Чтобы найти такого человека, нужны две вещи. Во-первых, нужно везение, чтобы встретиться с ним (или с ней). Во-вторых, нужно, чтобы у нас хватило ума понять важность того, что мы наблюдаем.

“Вам, конечно, всегда хватало и везения, и ума”, – говорит профессор английского языка.

К сожалению, нет. Однажды мне крупно повезло, но мне не хватило ума это понять. В молодости, когда я работал в Институте психиатрии в южной части Лондона, я исследовал человеческие механизмы обучения. Меня представили человеку, страдавшему сильной потерей памяти. В течение недели он каждый день приходил ко мне в лабораторию[34] и учился выполнять одну задачу, требующую определенного двигательного навыка. Его результат постепенно улучшался без отклонений от нормы, и выработанный навык сохранялся у него даже после недельного перерыва. Но вместе с тем у него была столь сильная потеря памяти, что каждый день он говорил, что никогда раньше со мной не встречался и никогда этой задачи не выполнял. “Как странно”, – думал я. Но я интересовался проблемами обучения двигательным навыкам. Этот человек обучался требуемому навыку нормально и не вызвал у меня интереса. Разумеется, многим другим исследователям удавалось оценить важность людей с подобными симптомами. Такие люди могут ничего не помнить о том, что происходило с ними ранее, даже если это было только вчера. Раньше мы предполагали, что это происходит оттого, что происходившие события не записываются у человека в мозгу. Но у того человека, с которым я работал, приобретенный ранее опыт явно оказывал долгосрочное влияние на мозг, потому что у него получалось день ото дня всё успешнее выполнять поставленную задачу. Но эти долгосрочные изменения, происходящие в мозгу, не действовали на его сознание. Он не мог вспомнить ничего из того, что происходило с ним вчера. Существование таких людей свидетельствует о том, что нашему мозгу может быть известно об окружающем мире что-то неизвестное нашему сознанию.

22

Около трети населения Земли страдает близорукостью. Но близорукость встречается еще чаще у таких людей, как вы, которые много читают и обладают высоким уровнем интеллекта. – Примеч. авт.

23

Изобретение способа измерять количество информации сыграло огромную роль в создании компьютеров и в изучении работы мозга (см. главу 5). – Примеч. авт.

24

Прежде чем достигнуть светочувствительных клеток сетчатки, свет должен пройти сквозь слой нервной ткани, пронизанной кровеносными сосудами. Чтобы видеть окружающий мир, нам приходится смотреть сквозь кровеносные сосуды, но мы этого не замечаем. Хотя, может быть, именно поэтому, если сильно напиться, можно, как утверждают, увидеть “розовых слоников”? – Примеч. авт.

25

Я не дуалист. – Примеч. авт. (Дуализм – философское учение, согласно которому в мире существует два несводимых друг к другу начала – материальное и духовное. – Примеч. перев.)

26

Я материалист. Но я должен признать, что по некоторым моим словам меня можно принять за дуалиста. Например, я говорю, что мой мозг “не рассказывает мне всё, что знает”, или “обманывает меня”. Я использую эти выражения потому, что они в первом приближении соответствуют моему психическому опыту. Бо́льшая часть того, что делает мой мозг, так никогда и не достигает моего сознания. Эти вещи известны моему мозгу, а мне неизвестны. С другой стороны, я глубоко убежден, что я – продукт моего мозга, как и все мои знания и представления. – Примеч. авт.

27

Нейрофизиологи нередко говорят об активности нейронов, “представляющей” (representing) что-то нематериальное. Например, есть такие нейроны, которые активируются только тогда, когда в глаза попадает красный свет. В таких случаях говорят, что активность нейрона представляет красный цвет. Утверждают даже, что активность некоторых нейронов в лобных долях коры “представляет информацию, восприятие которой предстоит”. – Примеч. авт.

28

Профессору английского языка не нравится эта формулировка. “Разве мозг способен познавать? Это доступно лишь сознанию. В энциклопедии содержатся сведения о мире, но мы не станем говорить, что энциклопедия знает что-то о мире. Мозг, должно быть, похож на энциклопедию, в которой активность нейронов соответствует буквам печатного текста. Если так, то кто читает ее?” – Примеч. авт.

29

Если вы хотите больше узнать о зрительной системе мозга, прочитайте книгу Семира Зеки (Semir Zeki) “Зрение и мозг” (“A Vision of the Brain”). – Примеч. авт. (Эта книга пока не переведена на русский язык, поэтому нашим читателям можно порекомендовать другую научно-популярную работу по той же теме – книгу нобелевского лауреата Дэвида Хьюбела “Глаз, мозг, зрение”. – Примеч. перев.)

30

От слова “visual” (зрительный). – Примеч. перев.

31

Это явление называют ретинотопическим представлением, потому что активность отдельных нейронов зрительной коры определяется светом, попадающим на определенные участки сетчатки (retina). Таким образом, любое движение глаз приводит к резким изменениям активности в первичной зрительной коре. Но видимый нами мир при этом не меняется. – Примеч. авт.

32

Термин “агнозия” предложил Фрейд еще до того, как он помешался на психоанализе. – Примеч. авт.

33

Нейрофизиологи изучают людей, страдающих от мозговых травм, а иногда и пытаются им помочь. – Примеч. авт.

34

В шестидесятых годах моей лабораторией была бывшая ванная комната, которую превратили в лабораторию, накрыв ванну доской из ДВП. – Примеч. авт.

Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Подняться наверх