Читать книгу Blockchain For Dummies - Laurence Tiana - Страница 4
Part 1
Getting Started with Blockchain
Chapter 1
Introducing Blockchain
ОглавлениеIN THIS CHAPTER
❯❯ Discovering the new world of blockchains
❯❯ Understanding why they matter
❯❯ Identifying the three types of blockchains
❯❯ Deepening your knowledge of how blockchains work
Originally, blockchain was just the computer science term for how to structure and share data. Today blockchains are hailed the “fifth evolution” of computing.
Blockchains are a novel approach to the distributed database. The innovation comes from incorporating old technology in new ways. You can think of blockchains as distributed databases that a group of individuals controls and that store and share information.
There are many different types of blockchains and blockchain applications. Blockchain is an all-encompassing technology that is integrating across platforms and hardware all over the world.
Beginning at the Beginning: What Blockchains Are
A blockchain is a data structure that makes it possible to create a digital ledger of data and share it among a network of independent parties. There are many different types of blockchains.
❯❯ Public blockchains: Public blockchains, such as Bitcoin, are large distributed networks that are run through a native token. They’re open for anyone to participate at any level and have open-source code that their community maintains.
❯❯ Permissioned blockchains: Permissioned blockchains, such as Ripple, control roles that individuals can play within the network. They’re still large and distributed systems that use a native token. Their core code may or may not be open source.
❯❯ Private blockchains: Private blockchains tend to be smaller and do not utilize a token. Their membership is closely controlled. These types of blockchains are favored by consortiums that have trusted members and trade confidential information.
All three types of blockchains use cryptography to allow each participant on any given network to manage the ledger in a secure way without the need for a central authority to enforce the rules. The removal of central authority from database structure is one of the most important and powerful aspects of blockchains.
Blockchains create permanent records and histories of transactions, but nothing is really permanent. The permanence of the record is based on the permanence of the network. In the context of blockchains, this means that a large portion of a blockchain community would all have to agree to change the information and are incentivized not to change the data.
When data is recorded in a blockchain, it’s extremely difficult to change or remove it. When someone wants to add a record to a blockchain, also called a transaction or an entry, users in the network who have validation control verify the proposed transaction. This is where things get tricky because every blockchain has a slightly different spin on how this should work and who can validate a transaction.
What blockchains do
A blockchain is a peer-to-peer system with no central authority managing data flow. One of the key ways to removing central control while maintaining data integrity is to have a large distributed network of independent users. This means that the computers that make up the network are in more than one location. These computers are often referred to as full nodes.
Figure 1-1 shows a visualization of the structure of the Bitcoin blockchain network. You can see it in action at http://dailyblockchain.github.io.
FIGURE 1-1: The structure of the Bitcoin blockchain network.
To prevent the network from being corrupted, not only are blockchains decentralized but they often also utilize a cryptocurrency. A cryptocurrency is a digital token that has a market value. Cryptocurrencies are traded on exchanges like stocks.
Cryptocurrencies work a little differently for each blockchain. Basically, the software pays the hardware to operate. The software is the blockchain protocol. Well-known blockchain protocols include Bitcoin, Ethereum, Ripple, Hyperledger, and Factom. The hardware consists of the full nodes that are securing the data in the network.
Why blockchains matter
Blockchains are now recognized as the “fifth evolution” of computing, the missing trust layer for the Internet. This is one of the reasons that so many people have become excited about this topic.
Blockchains can create trust in digital data. When information has been written into a blockchain database, it’s nearly impossible to remove or change it. This capability has never existed before.
When data is permanent and reliable in a digital format, you can transact business online in ways that, in the past, were only possible offline. Everything that has stayed analog, including property rights and identity, can now be created and maintained online. Slow business and banking processes, such as money wires and fund settlements, can now be done nearly instantaneously. The implications for secure digital records are enormous for the global economy.
The first applications created were designed to piggyback on the secure digital value transfer that blockchains enable through the trading of their native tokens. These included things like the movement of money and assets. But the possibilities of the blockchain networks go far beyond the movement of value.
The Structure of Blockchains
Blockchains are composed of three core parts:
❯❯ Block: A list of transactions recorded into a ledger over a given period. The size, period, and triggering event for blocks is different for every blockchain.
Not all blockchains are recording and securing a record of the movement of their cryptocurrency as their primary objective. But all blockchain do record the movement of their cryptocurrency or token. Think of the transaction as simply being the recording of data. Assigning a value to it (such as happens in a financial transaction) is used to interpret what that data means.
❯❯ Chain: A hash that links one block to another, mathematically “chaining” them together. This is one of the most difficult concepts in blockchain to comprehend. It’s also the magic that glues blockchains together and allows them to create mathematical trust.
The hash in blockchain is created from the data that was in the previous block. The hash is a fingerprint of this data and locks blocks in order and time.
Although blockchains are a relatively new innovation, hashing is not. Hashing was invented over 30 years ago. This old innovation is being used because it creates a one-way function that cannot be decrypted. A hashing function creates a mathematical algorithm that maps data of any size to a bit string of a fixed size. A bit string is usually 32 characters long, which then represents the data that was hashed. The Secure Hash Algorithm (SHA) is one of some cryptographic hash functions used in blockchains. SHA-256 is a common algorithm that generates an almost-unique, fixed-size 256-bit (32-byte) hash. For practical purposes, think of a hash as a digital fingerprint of data that is used to lock it in place within the blockchain.
❯❯ Network: The network is composed of “full nodes.” Think of them as the computer running an algorithm that is securing the network. Each node contains a complete record of all the transactions that were ever recorded in that blockchain.
The nodes are located all over the world and can be operated by anyone. It’s difficult, expensive, and time-consuming to operate a full node, so people don’t do it for free. They’re incentivized to operate a node because they want to earn cryptocurrency. The underlying blockchain algorithm rewards them for their service. The reward is usually a token or cryptocurrency, like Bitcoin.
The terms Bitcoin and blockchain are often used interchangeably, but they’re not the same. Bitcoin has a blockchain. The Bitcoin blockchain is the underlying protocol that enables the secure transfer of Bitcoin. The term Bitcoin is the name of the cryptocurrency that powers the Bitcoin network. The blockchain is a class of software, and Bitcoin is a specific cryptocurrency.
Blockchain Applications
Blockchain applications are built around the idea that network is the arbitrator. This type of system is an unforgiving and blind environment. Computer code becomes law, and rules are executed as they were written and interpreted by the network. Computers don’t have the same social biases and behaviors as humans do.
The network can’t interpret intent (at least not yet). Insurance contracts arbitrated on a blockchain have been heavily investigated as a use case built around this idea.
Another interesting thing that blockchains enable is impeccable record keeping. They can be used to create a clear timeline of who did what and when. Many industries and regulatory bodies spend countless hours trying to asses this problem. Blockchain-enabled record keeping will relieve some of the burdens that are created when we try to interpret the past.
The Blockchain Life Cycle
Blockchains originated with the creation of Bitcoin. It demonstrated that a group of individuals who had never met could operate online within a system that was desensitized to cheat others that were cooperating on the network.
The original Bitcoin network was built to secure the Bitcoin cryptocurrency. It has around 5,000 full nodes and is globally distributed. It’s primarily used to trade Bitcoin and exchange value, but the community saw the potential of doing a lot more with the network. Because of its size and time-tested security, it’s also being used to secure other smaller blockchains and blockchain applications.
The Ethereum network is a second evolution of the blockchain concept. It takes the traditional blockchain structure and adds a programming language that is built inside of it. Like Bitcoin, it has over 5,000 full nodes and is globally distributed. Ethereum is primarily used to trade Ether, make smart contracts, and create decentralized autonomous organizations (DAOs). It’s also being used to secure blockchain applications and smaller blockchains.
The Factom network is the third evolution in blockchain technology. It utilizes a lighter consensus system, incorporates voting, and stores a lot more information. It was built primarily to secure data and system. Factom operates with federated nodes and an unlimited number of auditing nodes. Its network is small, so it anchors itself into other distributed networks building bridges across the carries blockchains.
Consensus: The Driving Force of Blockchains
Blockchains are powerful tools because they create honest systems that self-correct without the need of a third party to enforce the rules. They accomplish the enforcement of rules through their consensus algorithm.
In the blockchain world, consensus is the process of developing an agreement among a group of commonly mistrusting shareholders. These are the full nodes on the network. The full nodes are validating transactions that are entered into the network to be recorded as part of the ledger.
Figure 1-2 shows the concept of how blockchains come to agreement.
FIGURE 1-2: How blockchains work.
Each blockchain has its own algorithms for creating agreement within its network on the entries being added. There are many different models for creating consensus because each blockchain is creating different kinds of entries. Some blockchains are trading value, others are storing data, and others are securing systems and contracts.
Bitcoin, for example, is trading the value of its token between members on its network. The tokens have a market value, so the requirements related to performance, scalability, consistency, threat model, and failure model will be higher. Bitcoin operates under the assumption that a malicious attacker may want to corrupt the history of trades in order to steal tokens. Bitcoin prevents this from happening by using a consensus model called “proof of work” that solves the Byzantine general’s problem: “How do you know that the information you are looking at has not been changed internally or externally?” Because changing or manipulating data is almost always possible, the reliability of data is a big problem for computer science.
Most blockchains operate under the premise that they will be attacked by outside forces or by users of the system. The expected threat and the degree of trust that the network has in the nodes that operate the blockchain will determine the type of consensus algorithm that they use to settle their ledger. For example, Bitcoin and Ethereum expect a very high degree of threat and use a strong consensus algorithm called proof of work. There is no trust in the network.
On the other end of the spectrum, blockchains that are used to record financial transactions between known parties can use a lighter and faster consensus. Their need for high-speed transactions is more important. Proof of work is too slow and costly for them to operate because of the comparatively few participants within the network and immediate finality need for each transaction.
Blockchains in Use
Hundreds of blockchains and blockchain applications are in existence today. The whole world has become obsessed with the ideas of moving money faster, incorporating and governing in a distributed network, and building secure applications and hardware.
You can see many of these public blockchains by going to a cryptocurrency exchange.
Figure 1-3 shows the altcoin exchange for Poloniex (https://poloniex.com), a cryptocurrency trading platform.
FIGURE 1-3: The altcoin exchange platform.
Blockchains are moving beyond the trading value market and are being incorporated into all sorts of industries. Blockchains add a new trust layer that now makes working online secure in a way that was not possible beforehand.
Current blockchain uses
Most up-and-running blockchain applications revolve around moving money or other forms of value quickly and cheaply. This includes trading public company stock, paying employees in other countries, and exchanging one currency for another.
Blockchains are also now being used as part of a software security stack. The U.S. Department of Homeland Security has been investigating blockchain software that secures Internet of Things (IoT) devices. The IoT world has some of the most to gain from this innovation, because it’s especially vulnerable to spoofing and other forms of hacking. IoT devices have also become more pervasive, and security has become more reliant on them. Hospital systems, self-driving cars, and safety systems are prime examples.
DAOs are another interesting blockchain innovation. This type of blockchain application represents a new way to organize and incorporate companies online. DAOs have been used to organize and invest funds via the Ethereum network.
Future blockchain applications
Larger and longer-run blockchain projects that are being explored now include government-backed land record systems, identity, and international travel security applications.
The possibilities of a blockchain-infused future have excited the imaginations of business people, governments, political groups, and humanitarians across the world. Countries such as the UK, Singapore, and the United Arab Emirates see it as a way to cut cost, create new financial instruments, and keep clean records. They have active investments and initiatives exploring blockchain.
Blockchains have laid a foundation where the need for trust has been taken out of the equation. Where before asking for “trust” was a big deal, with blockchains it’s small. Also, the infrastructure that enforces the rule if that trust is broken can be lighter. Much of society is built on trust and enforcement of rules. The social and economic implications of blockchain applications can be emotionally and politically polarizing because blockchain will change how we structure value-based and socially based transactions.