Читать книгу Путеводитель по истории Искусственного Интеллекта - Леонид Черняк - Страница 1
Введение
ОглавлениеО названии, терминологии и дискурсивных полях
Книга задумана как компактное руководство к путешествию по огромному морю материалов, связанных с историей искусственного интеллекта (ИИ), поэтому в ее название включено слово путеводитель. На русском, к сожалению, таких текстов немного, а те, что есть, безнадежно устарели, зато на английском языке их море. Собравшемуся в плавание не помешает этот путеводитель, содержание которого ограничено короткими историческими справками. Автор не претендует ни на абсолютную объективность, ни на полноту изложения, присущую научным трудам. Для того кто делится своим впечатлениями о совершенном путешествии допустимо собственное видение и субъективные предпочтения. В отличие традиционных путеводителей в книге нет иллюстраций, стоит ли в наше время соревноваться с огромным фото-, видео- и аудиоконтентом Сети, находящемся на расстоянии нескольких кликов?
Непосредственным импульсом к написанию стали специальности, избранные моими детьми – Катей и Алешей Артемовыми. Катя – специалист по работе с текстами на естественном языке (Natural Language Processing, NLP), а Алеша – эксперт в области компьютерного зрения (Computer Vision, CV). Общаясь с ними, я пришел к выводу, что тем, кто занимается этими актуальными аспектами ИИ, не хватает представления об истории того предмета, которому они посвятили свою профессиональную жизнь. И тогда возникла идея – а не стоит ли попытаться заполнить обнаруженный пробел в историческом знании всего того, что кроется под зонтичным термином ИИ? Пришлось самому совершить погружение в историю, в результате которого появилась книга, адресованная, в первую очередь, специалистам, чья практическая деятельность так или иначе корреспондируется с тем, что принято называть ИИ.
Незаменимую роль в появлении этой книги на свет сыграла ее редактор Татьяна Грачева, моя давняя коллега (мы работали в издательстве «Открытые системы»). Мысль об обращении к ней за помощью возникла при весьма необычных обстоятельствах – это случилось ночью, в ковидной больнице, размещенной в 75 Павильоне ВДНХ. Наутро из того же невеселого места я написал ей в WhatsApp и к моей радости получил положительный ответ. Как показало дальнейшее, такое начало ни как не помешало созданию продуктивного альянса. Я глубоко благодарен Татьяне за ее заинтересованное участие и важные комментарии к тексту.
Я хочу выразить признательность моей жене, Наталье Гаранян, за ее поддержку и терпение. Думаю, что только она – клинический психолог с многолетним опытом смогла вытерпеть сложности того периода жизни, который бы я назвал «AI у нас дома» по аналогии с названием книги «Атом у нас дома», написанной Лаурой Ферми, женой великого физика.
О терминологии
Для более точного соответствия используемой в книге терминологии обсуждаемому предмету мы в дальнейшем откажемся от русскоязычного термина «искусственный интеллект» в пользу оригинального Artificial Intelligence (AI). ИИ перегружен несовременными смыслами, в русскоязычном варианте термина каждое из двух слов – и «искусственный», и «интеллект» – не полностью соответствуют оригиналу, что создает изрядную проблему.
Казалось бы, английское artificial с русским «искусственный» близки, но они далеко не тождественны. Подавляющая часть значений английского artificial (от art – искусство, мастерство) так или иначе связана с понятием «рукотворный», а в русском, как утверждают лингвисты, слово искусственный ведет происхождение из немецкого künstlich, значащего, скорее, поддельный или ненатуральный, и несет его оттенок. Показательно, в русском при всем его словарном богатстве нашлось место слову артефакт, подчеркивающему, что предмет рукотворен, что он сделан человеком. В английском Artificial Intelligence нет и намека сверхъестественную природу происхождения, использование artificial прямо указывает на то, что AI не какая-то неведомая материя, непонятным образом возникшая, способная возвыситься над человеческим разумом, чтобы творить что ей угодно по собственным правилам, а нечто более прикладное, сделанное талантом и трудом человека.
Еще большее расхождение обнаруживается между словами intelligence и «интеллект». Да, можно перевести intelligence как интеллект, но это всего лишь одно из значений этого далеко не простого слова. Чтобы убедиться в многозначности intelligence, достаточного обратиться к любому онлайн-словарю, например, популярному Multitran’у. Там наряду с «интеллектом» найдутся еще десятки самых разных переводов. Общим для всех них служит одно – извлечение информации и знаний из данных и фактов с последующим использованием результатов в прикладных целях. Поэтому идея получения полезных сведений из сырых данных, полученных тем или иным способом, объединяет совершенно разные области деятельности: и военную разведку (military intelligence), и бизнес-аналитику (business intelligence) и многое иное.
О дискурсивных полях
Книга написана с уверенностью в том, что AI – это очередной шаг в непрерывном процессе развития инструментальных средств человека, в процессе, который начался с создания примитивных орудий, продолжился средствами механизации физического, а с появлением компьютеров – и частично и умственного труда. AI позволяет еще дальше и глубже автоматизировать последний. За скобками оставлены философские подходы к AI, а также все, что связано с Общим и Сильным AI, в том числе концепции трансгуманизма и рассуждения об угрозах со стороны сверхразума и роботов-андроидов и т. п. Такой утилитарный подход к AI несомненно вызовет возражения, поэтому автор хотел бы заранее предупредить критиков – примите как факт – эта книга не для вас, если вы не согласны с авторской позицией, не читайте ее. Полемизировать на сей предмет не имеет никакого смысла.
Разброс мнений относительно AI, невероятно велик, как говорил древнеримский раб-драматург Публий Теренций Афр: «Сколько людей, столько и мнений». Нет и не может быть единственно правильной точки зрения, обсуждать проблемы AI можно в только в пределах какого-то одного определенного дискурсивного поля. Напомним, что дискурсивное поле – это, по сути, сообщество единомышленников. Внутри любого дискурсивного поля образуется формальная или неформальная структура, состоящая из основателей, лидеров, активистов, приверженцев и попутчиков.
В России можно выделить несколько дискурсивных полей, так или иначе связанных с AI, некоторые из них имеют формальную организацию. Самое представительное поле образуют академические ученые, прежде всего математики. Многие из них входят в Российскую ассоциацию искусственного интеллекта (РАИИ), наследницу Советской ассоциации искусственного интеллекта, в ее составе заслуженные ученые: доктора и кандидаты наук из 45 регионов России. РАИИ проводит школы, симпозиумы, национальные конференции, ее члены участвуют международных конференциях, издает журнал «Новости искусственного интеллекта».
В существенно меньшее по численности поле входят ученые-философы, чьи интересы связаны с AI, их объединяет Научный совет РАН по методологии искусственного интеллекта и когнитивных исследований (НСМИИ и КИ). Деятельность совета включает проведение заседаний и теоретических семинаров и публикации трудов.
Есть несколько групп, состоящих из романтиков AI, часть из них концентрируется вокруг лаборатории робототехники «Сбера». Они связывают свою деятельность с Общим, или Сильным AI (Arificial General Intelience, AGI), поднимая примерно такие темы: «Может ли AI обладать сознанием?» «Может ли AI превзойти естественный интеллект?» Члены этого сообщества убеждены в том, что тест Тьюринга уже пройден существующими системами AI и что пора «разрушить стену Тьюринга» и ускоренными темпами создавать Сильный AI. Никто, правда, не уточняет, что представляет собой эта стена и почему ее надо разрушать. Они считают, что наступила пост-тьюринговская эпоха, когда человек знает, что общается с компьютером, и последний оказывается ему интереснее, чем другой человек.
И, наконец, есть огромное поле, состоящее из прагматически ориентированных специалистов, решающих реальные задачи, попадающие под определение AI. Их так много и область их деятельности так диверсифицирована, что дать общую характеристику этому полю не представляется возможным. Но можно выделить главное, как сказал известный специалист области машинного обучения Педро Домингес в своей книге «Верховный алгоритм» (The Master Algorithm): «AI – это планета, о которой мы только слышали, но теперь AI – это наша цель. Машинное обучение – это ракета, которая нас туда доставит, а ее топливо Большие данные (Big Data)».
Становясь частью современной индустрии, AI переживает сложный и неизбежный период, когда формируется обычное в таких случаях сочетание прикладной науки и инженерии, возникающее на основе предшествующих достижений в академической науке. Подобного рода трансформация теории в практику в прошлом наблюдалась неоднократно. В таких случаях с неизбежностью создается новый тип профессионального прикладного знания и возникает своего рода водораздел между академическим и инженерным знанием. Для практической инженерной работы обычно оказывается достаточным обладать ограниченным адаптированным набором прикладных знаний в сочетании с умением владеть нужным инструментарием, что же до избытка фундаментальных знаний, то порой он даже оказывается лишним. В качестве аналогии происходящему можно привести выделение в XIX и XX веках из физики таких сугубо инженерных областей как электротехника, строительная механика и других. Любой курс по теоретической электротехнике представляет собой не что иное, как выжимку из физики в сочетании с набором практик, необходимых для различных видов инженерной деятельности, от разработки до эксплуатации.
Признавая объективную необходимость упрощения, надо помнить об ограниченности инженерных знаний, иногда в процессе технических разработок возникают задачи, которые не имеют решения в рамках адаптированной инженерной модели, типичный пример проблема флаттера (возникновения вибрации при переходе самолетом звукового барьера). Авиационные конструкторы сами не смогли с ней справиться, потребовалась помощь со стороны физиков и математиков. Потеря связи инженерии с наукой в любой области грозит формированием того, что называют «монтерскими знаниями»: его носители успешно решают прикладные задачи, но при этом их не интересуют ни теоретические основы предмета, ни тем более его история. К сожалению, в носителей монтерских знаний превращаются многие из тех, кого называют чудовищным словом «айтишник». Трудно представить себе физика или химика, не знающего истории своей науки хотя бы в общих чертах, но, увы, среди тех, кто образует огромное дискурсивное поле, состоящее из практиков AI, знание истории этого предмета минимально, если оно вообще есть.
Книга представляет собой попытку раскрыть прикладным специалистам исторические предпосылки появления современного AI, не претендуя на большее. Она может вызвать справедливую критику со стороны представителей других дискурсивных полей, но, повторюсь, книга адресована не им.
А закончить это введение хотелось мечтой. На протяжении десятков лет в работе над AI принимали участие удивительные люди, яркие личности, их связывали сложные отношения, они испытывали триумфы побед и горечи поражений, судьба была более благосклонна к одним и несправедлива к другим. Чем не сюжет, например, для сериала на много сезонов? Как знать, может быть, кто-то и реализует эту мечту.