Читать книгу Путеводитель по истории Искусственного Интеллекта - Леонид Черняк - Страница 7

Глава 1 AI – От мечты к обыденности
Тьюринг и AI
«Умная машинерия» и два подходах к AI

Оглавление

Преувеличенное внимание к «Вычислительным машинам и разуму» оставило в тени другую, куда более значимую для AI работу – отчет «Умная машинерия» (Intelligent Machinery, IM), написанный Тьюрингом раньше, в 1948 году. Тьюринг использовал названии не machine, переводимое как машина, а machinery, этому слову точнее соответствует устаревшее в русском машинерия, трактуемое в словарях как совокупность машин, механизмов, технического оборудования. Таким образом он не связывает себя с определенным типом машины. Научное достоинство этой работы подтверждается тем, что в роли ее заказчика выступила Национальная физическая лаборатория (NPL), где создавались не только первые британские компьютеры, но и атомная бомба. В этом труде нет никаких поводов, дающих апологетам Сильного AI пищу для праздномыслия. Сорок с лишним лет IM оставался внутренним документом NPL, роковым в его судьбе оказалось пристрастие к секретности англичан, они же, например, более полувека хранили в тайне проект Ultra и потерявший актуальность компьютер Colossus. Случись публикация IM раньше, эта работа наверняка заняла бы более высокое место в научном наследии Тьюринга, чем «Вычислительные машины и разум», а главное оказала бы позитивное влияние на развитие AI.

В IM Тьюринг гениально предсказал возможные направления в развитии AI, здесь он не занимается мыслительным эквилибристикой или вербальными доказательствами способности машины мыслить, напротив, он предельно строг и рационален. Заметим, что Тьюринг не ограничивает технические средства для IM компьютером, хотя уже тогда было хорошо известно, что такое цифровые компьютеры, над созданием которых он работал, начиная с 1944 года. Первым был Colossus, хотя и цифровой, но еще электронно-механический специализированный компьютер, предназначенный только для дешифровки немецких радиограмм. Алгоритмы, разработанные для него Тьюрингом, основывались на Байесовской теории вероятностей, возможно, это был первый случай практического применения этой теории. Сразу же после окончания войны Тьюринг выполнил для той же NPL эскизный проект «Предложение по электронному калькулятору» (Proposed Electronic Calculator), который был использован при построении английского компьютера-прототипа ACE (Automatic Computing Engine). Поученный в процессе разработки опыт пригодился английским ученым и инженерам в 1947 году при создании первого в мире цифрового программируемого компьютера EDSAC (Electronic Delay Storage Automatic Calculator).

В IM Тьюринг поражает своей прозорливостью: он обосновал возможность существования двух альтернативных подходов к созданию AI, и, как показало будущее, эта дихотомия оказалась верной на 100 %. Один из возможных подходов он назвал подходом «сверху вниз» (top down), его суть в прямом переносе человеческих знаний в машину, позже этот подход за способ передачи был назван символьным. Начиная с 1956 года символьный подход доминировал, он развивался с переменным успехом, пока не достиг предела своего совершенства в экспертных системах и инженерии знаний, но в конечном счете он оказался тупиковым.

Второй подход Тьюринг назвал «снизу вверх» (bottom up), он строится на качественно ином предположении, не имеющем столь древних философских корней. Реальные предпосылки к такому подходу впервые возникли у нейрофизиологов в 30-е годы прошлого века, их работы подтолкнули к мысли о машине, представляющей собой искусственно созданную нейронную сеть (Artificial Neural Network, ANN).

Деление возможных подходов к AI на два – на top down и на bottom up оказалось воистину провидческим, как почти все, что сделал Тьюринг за свою короткую жизнь. Действительно AI в последующем развивался независимо по указанным им альтернативным направлениям. Детальнее о каждом из двух – символьном и коннекционизме, о том, как складывалась их история на протяжении восьми десятилетий, мы расскажем в этой книге. Здесь же можно ограничиться замечанием о том, что символьный подход был востребован в 60–90-е годы. Неудивительно, ведь он обещал невероятно быстрые результаты без особых научных вложений, казалось, что для создания AI достаточно написать соответствующие программы для уже существующих или проектируемых компьютеров. И напротив, развитие коннекционизма в силу целого ряда объективных и субъективных причин, прежде всего из-за отсутствия нужной теории и технологий моделирования ANN, было отложено на несколько десятилетий. Однако в XXI веке ситуация развернулась на 180 градусов, символьный подход ушел в забвение и восторжествовал коннекционизм. На данный момент практически все известные внедрения AI основываются исключительно на коннекционизме. Он стал фундаментом всей индустрии AI, созданной за последние 10 лет, а примеры сохранившихся систем на базе символьного подхода во всем мире можно пересчитать по пальцам.

В главе 4 будет описана история символьного подхода к AI, а в главе 5 коннекционистского.

Путеводитель по истории Искусственного Интеллекта

Подняться наверх