Читать книгу Дерзкие мысли о климате - Лев Иванович Файко - Страница 15
Часть I. Вводная
Глава 3. Где еще мы ошибаемся?
3.3. Как передается тепло через плавучий лёд?
ОглавлениеНадо отметить интересное свойство плавучего льда передавать теплоту только в одном направлении – от воды в атмосферу, но не наоборот. Такое утверждение хотя и редко встречается в литературе, но часто парируется ответом, что де обратно через лёд может передаваться холод. Но «холод» или «передача холода» – это физически несостоятельные понятия, условно допустимые в обиходе, но не далее, ибо «передача холода» это нечто иное, как та же потеря или отвод тепла. Если мы будем думать и говорить, что из льда выделяется тепло, но в него же возвращается холод, то опять впадем в дуализм и будем дважды считать движение одного и того же теплового потока из льда в атмосферу. Лишь в самой массе льда, охлажденного ниже температуры замерзания, могут наблюдаться сменяющие один другого разнонаправленные потоки тепла. Не исключено, что невнимание к этому факту способствовало искажению представлений о направленности потоков теплоты фазового превращения между водой и льдом.
Как показано далее, такая однонаправленность потока тепла через плавучий лёд компенсируется в период таяния льда таким же по величине обратным потоком тепла, но передаваемым воде совсем иным путем, минуя кондуктивную теплопроводность, что, как оказывается, ускользало от внимания исследователей.
Собственно, однонаправленность теплообмена через плавучий лёд объясняется просто. С самого начала льдообразования и в период наращивания и существования ледяного покрова наиболее высокое значение температуры постоянно удерживается у нижней поверхности льда, а низкое – на внешней поверхности. И если весной внешняя поверхность всё же прогревается до температуры плавления, то следствием этого является прекращение сквозного кондуктивного теплообмена через ледяной покров.
Но и однонаправленный тепловой поток через ледяной покров водоёмов не бывает сколько-нибудь длительно постоянным, поскольку параметры его определяющие (разность температуры между поверхностями льда, его толщина) претерпевают изменения. Более стабильным бывает коэффициент теплопроводности пресноводного льда. Но морской лёд, за счет изменений количества замерзающих рассолов в разных его слоях, связанных с изменениями температуры, также не может сколько-нибудь длительно сохранять стабильность этой характеристики. Поэтому встречающиеся иногда данные расчетов за длительный промежуток времени теплопередачи через всю толщу ледяного покрова с помощью формулы теплопроводности, как правило, бывают ошибочны. Тем более таким путем нельзя определять потери тепла от воды в атмосферу через лёд.
Наибольшие искажения в решения вносит нестабильность температурного градиента. Он постоянно подвержен изменениям, зависимым от сезона года, от непериодических изменений температуры воздуха, вследствие изменения погодных условий, динамики толщины и плотности снега на льду, вытеканий воды на его поверхность и так далее.
Знание конкретной разности температуры между поверхностями ледяного покрова, что легко устанавливается по изменению температуры лишь верхней поверхности льда, ещё не свидетельствует о том, равномерно ли изменяется температура по всей толщине льда. А это условие также необходимо для удовлетворительного определения величины кондуктивного потока тепла через лёд.
Для сквозной кондуктивной передачи тепла через лёд необходимо непрерывное изменение температуры по нормали к плоскостям ледяного покрова. Эта передача будет лимитироваться участком нелинейного градиента, между концами которого разность температуры минимальна и совсем прекратится, если градиент будет разорван участком, лишенным разности температуры. Такой участок будет соответствовать положению безградиентного изотермического горизонтального слоя в ледяном покрове.
Поэтому встречающийся в печати вывод средне-интегрального температурного градиента, сделанный на основе одновременно выполненных ступенчатых измерений температуры льда по его толщине, чаще всего лишен практического смысла, а использование его при расчетах оказывается неправомерным. В любом случае величину общего теплообмена необходимо увязать с теплопроводящей способностью этого слоя льда, на границах которого обнаруживается наименьшая разность температуры. Обнаружить этот слой можно только прямым измерением температуры равных по глубине слоев льда, что сопряжено с большими трудностями.
Когда прикидочный расчет оказывается всё же необходим, полезно знать, что вероятность более удовлетворительного решения увеличивается в первой половине зимы, когда градиент температуры чаще бывает линейным и становится малой во второй половине зимы. Вероятность удовлетворительного решения оказывается тем больше, чем тоньше бывает лёд. Чтобы понять причины таких зависимостей полезно знать о составляющих теплового потока через лёд и характере их взаимодействия.
Чем бы не возбуждался и каким бы источником не обеспечивался тепловой поток через лёд, по величине он может быть только таким, каким определяют его конкретные параметры теплопроводности, но не больше и не меньше. Знание этого условия упрощает решение задачи о дифференциации источников тепла, обеспечивающих тепловой поток.
В общем случае тепловой поток через пресный плавучий лёд может слагаться из трех составляющих его величин: теплоты кристаллизации; тепла, обменивающегося при изменении энтальпии самого льда, то есть при его остывании ниже температуры замерзания; и, наконец, из потока теплоты, передаваемой от воды в атмосферу, но не принимающей участия в фазовых превращениях у нижней поверхности льда.
Поскольку удельная величина теплоты фазового превращения воды в лёд оказывается довольно стабильной (около 334 Дж/г), то величина интенсивности отвода теплоты кристаллизации легко определяется по скорости намерзания льда, а общее количество её потерь за всё время его намерзания – толщиной ледяного покрова.
Отвод тепла, определяющий уменьшение (иногда и увеличение) энтальпии самого льда способствует формированию градиента температуры, по «ступенькам» которого далее осуществляется весь кондуктивный теплообмен через толщу льда. Он определяется теми же параметрами теплопроводности и, сверх того, удельной теплоёмкостью льда, которая составляет около 2Дж/ г×°C.
Определение удельной теплоёмкости морского ледяного покрова требует особого подхода. Так как в обычном случае ледяной покров имеет наименьшую температуру на поверхности, а наибольшую – на нижней, то и отвод (расход) тепла при уменьшении энтальпии льда наибольший вблизи внешней поверхности и наименьший вблизи нижней. Он вовсе исключается в слое изотермического протекания фазового превращения. Общее количество тепла, отводимого при охлаждении пресного льда, обычно оказывается во много раз меньше, чем его высвобождается при фазовом превращении. Поэтому большинство известных решений задачи о наращивании плавучего льда, часто называемых «стефановскими» по имени ученого, впервые предложившего общий принцип решения таких задач, игнорируют количеством теплоты, передаваемым при охлаждении льда ниже 0 °C.
Однако в мощных многолетних арктических льдах доля тепла, участвующего в изменении энтальпии в общем теплообмене через лёд, становится значительной и часто требует учета. Простой метод определения этой величины был недавно предложен (Л. И. Файко, 1986).
Ещё более неопределенными долго остаются представления о возможной величине сквозного потока тепла от воды в атмосферу через лёд. Здесь в первую очередь возникает вопрос – может ли вообще существовать такой поток тепла? Если известно, что нижний «конец» градиента температуры во льду всегда равен температуре фазового превращения, то есть температуре предельно возможного, в присутствии ядер кристаллизации, охлаждения воды.
Но он может быть. Чтобы убедиться в этом, достаточно представить случай, когда путем добавления, определенного количества теплой воды под лёд можно вовсе остановить его наращивание и, тем самым, полностью заменить поток теплоты кристаллизации таким же по величине сквозным потоком тепла от воды в атмосферу. Если же могут иметь место тот и другой (крайние случаи), то могут быть и разные сочетания в соотношениях долей теплоты кристаллизации и теплоты, передающейся непосредственно от воды. Всякие отклонения температуры воздуха соответственно деформируют температурный градиент во льду, зачем следует и изменение интенсивности оттока теплоты через лёд.
Замерзания открытой воды не произойдёт до тех пор, пока потери тепла с её поверхности будут восстанавливаться таким же количеством тепла, конвективно поступающего из глубины водоёма. Когда же снизу тепла станет поступать меньше, поверхностный слой воды вынужденно начнет переохлаждаться и замерзать. С этого момента общая потеря тепла водоёмом в атмосферу резко сократится, так как будет лимитироваться намного менее интенсивной кондуктивной теплопроводностью через лёд. Того, кто захочет познакомиться с математической интерпретацией изложенных положений, можно отослать к упомянутой выше работе автора.