Читать книгу Возвращение времени. От античной космогонии к космологии будущего - Ли Смолин - Страница 8

Часть I
Гравитация: устранение времени
Глава 4
Физика “в ящике”

Оглавление

Школьником я попробовал сыграть роль в пьесе Сартра “За закрытыми дверями”. Я играл Гарсэна, запертого в комнате с двумя женщинами. Все трое на самом деле уже умерли. Сцена являла собой крайний вариант замкнутого общества. Это позволило драматургу изучить последствия нашего нравственного выбора. В кульминационный момент я должен был ломиться в дверь класса, крича знаменитое: “Ад – это другие!” Но стекло в двери разбилось, обдав меня градом осколков. Так окончилась моя актерская карьера.

Музыка, как и театр, позволяет изучать эмоции в контролируемой среде. Подростком я слушал леденящее душу произведение в исполнении группы “Суицид” моего двоюродного брата в подвале центра “Мерсер” в Гринвич-виллидже. Музыканты заперли двери и буквально загипнотизировали слушателей, до отупения повторяя классику гаражного рока 96 Tears, песню о бессмысленном убийстве. Ощущение клаустрофобии усиливалось: как и в пьесе Сартра, мы сидели взаперти. Совсем недавно этот метод взяли на вооружение художники-концептуалисты. Они закрывали на сутки в комнате двух очень непохожих людей, например художника и ученого, и снимали на видео все, что происходило[27].

И в том спектакле, и на концерте изоляция не являлась настоящей. Можно было уйти в любое время. Но аудитория этого не делала, потому что есть многое, чему нужно научиться. Ограничение превращается в благо. Искусство ищет общее в частном[28], и чтобы добиться успеха, нередко приходится накладывать ограничения. То же и в физике. Большинство из того, что мы знаем о природе, мы знаем благодаря экспериментам, во время которых мы изолируем явление от круговорота Вселенной. Метод этот обусловил успех физики со времен Галилея. Я называю его физикой “в ящике”. У него есть и преимущества, и недостатки, причем и те, и другие играют важнейшую роль в истории изгнания времени из физики и его возвращения.

Мы живем во Вселенной, в которой материя находится в вечном движении. Декарт, Галилей, Кеплер и Ньютон научились изолировать малые части мира, изучать их и описывать наблюдаемые изменения. Они показали, как нужно представлять записи этого движения в виде графиков, оси которых соответствуют положению в пространстве и времени. Графики можно изучать в любое время.

Для применения математики к физической системе мы в первую очередь должны изолировать последнюю. Мы недалеко ушли бы в исследовании движения, если бы беспокоились, как все сущее во Вселенной влияет на предмет нашего исследования. Основоположники физики добились успеха лишь потому, что умели изолировать простые подсистемы вроде полета мяча. В реальности, однако, мяч в полете подвержен влиянию мириада факторов вне выделенной подсистемы. Простое описание игры в мяч как замкнутой системы – грубое приближение, которое, однако, помогло открыть принципы, регулирующие, как выяснилось, движение в нашей Вселенной[29].

Для изучения системы мы должны определить, что она содержит и что мы из нее исключаем. Мы рассматриваем систему, как если бы она была изолирована от остальной Вселенной, и эта изоляция сама является сильным приближением. Мы не можем отделить систему от Вселенной. В эксперименте мы можем лишь уменьшить, но не устранить внешнее влияние на нашу систему. Тем не менее, во многих случаях мы можем сделать это достаточно аккуратно, чтобы идеализация замкнутой системы стала полезной конструкцией.

Частью определения подсистемы является перечисление всех переменных, которые необходимо измерить, чтобы узнать о системе все, что мы хотим знать о ней в определенный момент времени. Список этих переменных – абстракция, которую мы называем конфигурацией системы. Чтобы представить набор всех возможных конфигураций, мы определяем абстрактное пространство, называемое конфигурационным. Каждая точка в конфигурационном пространстве представляет собой одну из возможных конфигураций системы. Конфигурационное пространство – это всегда приближение к более полному описанию. И конфигурация, и ее представление в конфигурационном пространстве являются абстракцией, человеческим изобретением, полезным для занятий физикой “в ящике”.

Для описания бильярда мы можем выбрать для записи расположение 16 шаров на двумерном столе. Чтобы локализовать шар на столе (его положение относительно длины и ширины стола), потребуются два числа, поэтому полная конфигурация потребует 32 числа. В конфигурационном пространстве имеется одно измерение для каждого числа, которое должно быть измерено, так что в случае с бильярдом оно представляет собой 32-мерное пространство.

Но настоящий бильярдный шар представляет собой чрезвычайно сложную систему, так что представление о нем как об объекте с определенным положением является сильным приближением. Если вы желаете получить более точное описание игры на бильярде, придется фиксировать позиции не только шаров, но и каждого атома в каждом шаре. Это потребует по меньшей мере 1024 чисел и, следовательно, конфигурационного пространства более высокой размерности. Но зачем останавливаться на достигнутом? Если описание на уровне атомов – это то, что вы хотели, вы должны учесть положение всех атомов бильярдного стола, всех атомов воздуха, которые барабанят по шару, всех квантов света в комнате… Или даже всех атомов, из которых состоят Земля, Солнце и Луна, действующих на шары посредством гравитации. Любое описание меньше космологического будет приблизительным.

Вне подсистемы остаются еще часы. Они не считаются ее частью, поскольку предполагается, что время течет равномерно, независимо от того, что происходит в подсистеме. Часы задают стандарт, в сравнении с которым мы измеряем движение подсистемы.

Использование внешних часов нарушает концепцию относительности времени. Изменения в системе измеряются по отношению к ходу внешних часов, но мы предполагаем, что ничто в системе не может повлиять на ход внешних часов. Это удобно, но возможно лишь потому, что мы пренебрегаем всеми взаимодействиями между системой и всем, что находится вне ее, в том числе часами.

Если мы принимаем этот подход слишком серьезно, может возникнуть искушение представить внешние по отношению к Вселенной часы, с помощью которых мы можем измерять изменения во Вселенной. Это приведет нас к концептуальной ошибке, основанной на вере в то, что Вселенная в целом эволюционирует по отношению к некоему абсолютному времени. Ньютон совершил эту ошибку, потому что считал свою физическую картину мира в целом устроенной Богом. Эта ошибка сохранялась, пока Эйнштейн не нашел способ перенести часы внутрь Вселенной.

Тем не менее, если мы не принимаем эту концепцию слишком серьезно, картина небольшой подсистемы, эволюционирующей в сопоставлении с показаниями внешних часов, является весьма полезным приближением. В каждый момент измерения мы получаем ряд чисел, характеризующих конфигурацию подсистемы в это время, и, следовательно, определяем точки в конфигурационном пространстве. Мы можем идеализировать эту последовательность точек с помощью кривой в конфигурационном пространстве (рис. 9). Она представляет собой историю эволюции подсистемы в виде записанной последовательности измерений ее конфигурации. Как и в случае игры Дэнни и Джанет, в этой картине время не присутствует. Осталась траектория в пространстве возможных конфигураций, несущая информацию о прошлом. После эксперимента у нас остается представление о движении подсистемы, которое разворачивалось во времени всего раз – посредством математического объекта, которым является кривая в пространстве возможных конфигураций подсистемы.


Рис. 9. Конфигурационное пространство и проходящая через него кривая истории.


Конфигурационное пространство существует вне времени – предполагается, что всегда. Когда я говорю о “пространстве возможных конфигураций”, я имею в виду, что если бы я пожелал, то поместил бы подсистему в любую из этих конфигураций в любое время. История системы в представлении такой кривой начинается с ее первой точки. Эта кривая, однажды построенная, существует вне времени. Это возвращает нас к ключевому вопросу: является ли исчезновение времени в таком представлении отражением реальности – или это заблуждение, непредвиденное следствие метода приблизительного описания малых частей Вселенной?


Ньютон сделал больше, нежели открыл способ описать движение. Он смог предсказывать его. Галилей обнаружил, что мяч летит по параболе. Ньютон дал нам метод определения формы траектории для множества случаев. Этот метод и есть содержание его трех законов движения. Они могут быть резюмированы следующим образом. Чтобы предсказать траекторию мяча, необходимо знать:

а) Исходное положение мяча;

б) Начальную скорость мяча (как быстро и в каком направлении он движется);

в) Силы, которые будут действовать на мяч во время движения.

Располагая этой информацией и опираясь на законы Ньютона, можно предсказать траекторию. Мы можем запрограммировать компьютер, чтобы он сделал это вместо нас. Задайте три начальных условия, и компьютер выдаст траекторию. Решение уравнений Ньютона представляет собой кривую в конфигурационном пространстве, историю системы с момента, в который приготовлена система или начаты наблюдения. Конфигурация системы в этот момент называется начальным условием. Вы описываете исходное состояние, когда задаете исходное положение и начальную скорость. Затем подключаются законы движения и довершают дело.

Один закон имеет бесконечное множество решений, и каждое из них описывает возможное поведение системы, удовлетворяющее этому закону. Когда вы задаете начальные условия, то указываете, какое из множества решений описывает конкретный эксперимент. Таким образом, чтобы предсказать будущее или что-либо объяснить, недостаточно знания законов. Вы должны знать начальные условия. В лабораторных экспериментах это легко, потому что экспериментатор подготавливает систему, задавая ее исходное состояние.

Закон падения тел Галилея определяет, что мяч Дэнни полетит по параболе. Но по какой? Ответ зависит от того, как быстро, под каким углом и из какого положения Дэнни бросил мяч, то есть от начальных условий.

Оказывается, этот метод применим к любой системе, которая может быть описана с помощью конфигурационного пространства. После того, как система определена, нам необходима все та же исходная информация:

а) Начальная конфигурация системы;

б) Первоначальное направление и скорость изменения системы;

в) Силы, действующие на систему во время ее эволюции.

Законы Ньютона предсказывают точную кривую в конфигурационном пространстве, которой система будет следовать.

Нельзя недооценивать универсальность и мощь метода Ньютона. Он применим к звездам, планетам и их спутникам, к галактикам, звездным скоплениям, скоплениям галактик, к темной материи, атомам, электронам, фотонам, к газам, твердым телам и жидкостям, к мостам, небоскребам, автомобилям, самолетам, искусственным спутникам и ракетам. Его успешно применяют и к системам с одним, двумя, тремя телами, и к системам, состоящим из 1023 или 1060 частиц, а также к полям, например электромагнитным, определение которых требует измерения бесконечного числа переменных (электрического и магнитного поля в каждой точке пространства). С его помощью описано огромное количество сил или взаимодействий, также представляющих собой переменные, которые определяют систему.

Этот метод может быть применен и в области компьютерных наук, где он называется моделью клеточных автоматов. Модифицированный, он стал основой квантовой механики. Имея в виду могущество этого метода, его можно назвать парадигмой. В сущности, ньютонова парадигма выстраивается из ответов на два вопроса:

а) Каковы возможные конфигурации системы?

б) Какие силы действуют на систему в каждой из конфигураций?

Возможные конфигурации называются начальными условиями, потому что с их помощью мы указываем начальное состояние системы. Правила, согласно которым описываются силы и их действие, называются законами движения. Эти законы представлены уравнениями. Когда вы задаете начальные условия, уравнения определяют будущую эволюцию системы. Существует бесконечное количество таких решений уравнений, поскольку существует бесконечное число возможных начальных условий.

Следует знать, что этот метод основан на нескольких предположениях. Во-первых, что конфигурация пространства существует вне времени. Предполагается, что метод может дать набор всех возможных конфигураций, прежде чем мы сможем наблюдать действительную эволюцию системы. Возможные конфигурации не эволюционируют, а просто существуют. Второе предположение состоит в том, что силы и, следовательно, законы, которым подчиняется система, существуют вне времени. Предположительно, они также могут быть указаны до фактического исследования системы.

Этот урок столь же прост, сколь и страшен. В рамках ньютоновой парадигмы время не имеет значения и может быть устранено из описания мира. Если пространство возможных конфигураций, как и законы движения, может быть определено без привлечения времени, нет необходимости рассматривать историю любой системы как развивающуюся. Для ответов на любые вопросы физики достаточно представлять историю системы с помощью одной из застывших кривых в конфигурационном пространстве. Самый, казалось бы, важный аспект обыденного познания мира, данный нам в ощущении последовательности мгновений, в наиболее успешной модели описания природы отсутствует.

Мы начали с теннисного мяча с номером телефона, брошенного Дэнни Джанет в Хай-парке 4 октября 2010 года. И мяч этот привел нас к вечности.

27

Diamond, Sara, et al. CodeZebra Habituation Cage Performances. Rotterdam: Dutch Electronic Arts Festival, 2003.

28

Благодарю Сент-Клэра Семена за обсуждение этого вопроса.

29

Рассмотрим систему из звезд, движущихся под влиянием взаимного гравитационного поля. Взаимодействие двух звезд может быть описано точно, Ньютон решил эту проблему. Но нет точного решения, описывающего гравитационное взаимодействие трех звезд. Любая система из трех или более тел должна рассматриваться приблизительно. Такие системы демонстрируют широкий спектр поведения, включая хаос, и крайне чувствительны к начальным условиям. Хотя это лишь пример простой системы, состоящей из двух звезд, решение для которой нашел Ньютон еще в XVII веке, эти явления не были известны до начала 20-х годов XX века, когда их описал французский математик Анри Пуанкаре. Осмысление так называемой задачи трех тел потребовало изобретения совершенно нового раздела математики: теории хаоса. В наше время системы из тысяч или миллионов тел могут моделироваться с помощью суперкомпьютеров. Это моделирование позволило понять поведение звезд в галактиках и даже взаимодействие галактик в скоплениях. Но результаты, несмотря на всю их пользу, основаны на грубых приближениях. Звезды, состоящие из огромного числа атомов, оцениваются, как если бы они были точками, и воздействие их с чем-либо вне системы, как правило, игнорируется.

Возвращение времени. От античной космогонии к космологии будущего

Подняться наверх