Читать книгу Новости науки. Исследования на кухонном столе - Лим Ворд, Рем Ворд - Страница 4

Это интересно
Электроны устают?

Оглавление

«Некоторые фундаментальные законы физики настолько просты и очевидны, что в их справедливости никто не сомневается и их проверкой никто не занимается. В частности это касается закона Ома, согласно которому сила постоянного тока в цепи (во всяком случае при его малой плотности) равна частному от деления напряжения на сопротивление: I=U/R. Из этого следуют и другие правила электротехники. Например, согласно закону Джоуля – Ленца, тепло W, выделяемое на сопротивлении R, прямо пропорционально падению напряжения на нем U, силе тока I и длительности его прохождения t, то есть W = R-U-1-t. Поэтому если в замкнутую цепь последовательно включены два одинаковых сопротивления, то на них в единицу времени должно выделяться одно и то же количество тепла. Кажется совершенно очевидным, что, минуя первое сопротивление, электроны не способны ни приобрести дополнительную энергию, ни потерять ее.

Но действительно ли выполняется закон Ома для сопротивлений всех видов при малых плотностях тока? Заинтересовавшись этим вопросом, я выполнил серию нехитрых экспериментов. Два, по возможности, одинаковых сопротивления я включал в цепь постоянного тока, а рядом с ними прикреплял датчики чувствительных термометров. Каждое сопротивление вместе со «своим» датчиком помещалось в отдельный термостат.

В первых опытах в качестве сопротивлений я использовал лампы накаливания (рассчитанные на напряжение 2,5 В и ток 0,15 А). Включив ток (его источником служили понижающий стабилизирующий трансформатор и выпрямитель, включенные в бытовую цепь напряжением 220 В), я на протяжении часа измерял температуру в термостатах; затем менял лампы местами и повторял измерения. Пять серий подобных экспериментов показали, что металлические сопротивления выделяли количество тепла в полном соответствии с классическими законами электротехники, причем независимо от того, в каком месте эти сопротивления ни находились.

Измерения с использованием сопротивлений других типов я не проводил, но выполнил опыт, используя в качестве сопротивления электролитические ячейки, в которых на электродах из нержавеющей стали разлагалась обычная водопроводная вода; результат опять-таки не выявил никаких аномалий.

Но если электролиз воды выполнялся в пористой, неоднородной среде, картина оказывалась иной.

Электролитические ячейки я заполнял смесью кварцевого песка и водопроводной воды, подкисленной для лучшей электропроводности несколькими каплями соляной кислоты (что, вообще говоря, не обязательно). И первые же эксперименты дали поразительные результаты, не соответствующие классическим законам электротехники.

А именно, температура в термостате, расположенном по ходу движения электронов, оказалась значительно выше температуры в следующем термостате! При напряжении источника тока 220 В и его силе 0,5 А разница составила 90С, что значительно превышало величину погрешности предыдущих опытов. Всего я выполнил 10 подобных экспериментов и заметил, что разница температуры между ячейками явно зависит от силы тока в цепи и может достигать даже нескольких десятков градусов.

Я также обратил внимание на то, что на первой ячейке падение напряжения было выше, чем на второй (150 и 70 В соответственно), что объясняет повышенное тепловыделение. Но без ответа остался главный вопрос: почему возникает такая заметная асимметрия, если до и после опытов сопротивления ячеек были одинаковыми? Ведь такого эффекта быть не должно!

Можно предположить, что в первой ячейке электроны почему-то теряют часть какой-то своей внутренней энергии и потому во второй ячейке уже не способны столь же интенсивно взаимодействовать с ионами. Но ведь вторая ячейка тоже (хотя и не стиль сильно) нагревается. Правда, в песчано-водяных электролитических ячейках существует множество локальных и довольно резких перепадов сопротивления среды, в результате чего электроны в ней то резко ускоряются, то резко замедляются. Не в этом ли заключается причина наблюдавшегося мной эффекта?

Конечно, мое предположение о том, что после прохождения определенного устройства электроны могут как бы уставать, отдавая среде какую-то свою особую энергию, противоречит законам ядерной физики, согласно которым электрон не имеет внутренней структуры и обладает только запасом внешней кинетической энергии. Но если я не прав, то пусть мне укажут на ошибку, желательно, повторив мои эксперименты.


1—4. электроды из нержавеющей стали

5. датчики термометров

6. первая песчано-водяная ячейка

7. вторая песчано-водяная ячейка

8. термостаты

9. источник постоянного тока


…Изначальная идея эксперимента – аномальное выделение тепла в гранулированной среде. Получилось не совсем то, что предполагалось отыскать, но все равно, результат интересный. Это выглядит так, будто носителя заряда, ионы и электроны, плотно взаимодействуя друг с другом в первой, по ходу тока, ячейке, теряют часть своей внутренней энергии. И, разумеется, все это происходит во внутренне разделенной, более или менее упорядоченной среде.

К сожалению, отсутствие калориметров, инструментария для точного определения количества выделенного тепла не позволяют получать данные на количественном уровне. Но и качественный результат – тоже, неплохой результат.

В первом приближении, генератор электромагнитной энергии может выглядеть как взвесь магнитных микроскопических шариков в сторонней среде. Согласно всему вышесказанному, упорядоченный массив должен периодически менять свои свойства (а значит, и магнитный поток) во времени. Остается прибавить к нему катушку с проводом, чтобы получить более или менее вечный генератор.

В случае с чайником, дела обстоят так. Пусть стол, на котором он оставлен остывать – высоко упорядоченная структура из множества одинаковых элементов, в замкнутом объеме (он может быть велик). Энергия кипятка сначала распределится по всему объему. Затем в системе возникнут макроскопические флуктуации температуры. Период их появления в том или ином месте можно вычислить или даже организовать. Мы ставим остывший сосуд в нужное время в нужном месте – и он закипает.

Данная структура может работать в открытом пространстве, привлекая рассеянную в среде энергию, поднимая ее до прежнего высокого уровня.

К таким системам, несомненно, можно причислить живых существ, начиная с простейших одноклеточных. Организм состоит из миллиардов, триллионов пор, мембран, открывающихся и закрывающихся согласно определенному ритму. Для своей жизнедеятельности он привлекает больше энергии, чем потребляет при переваривании пищи, – что доказывается некоторыми научными исследованиями. Очевидно, живая, упорядоченная материя и есть подобие вечного двигателя – впрочем, пока не вполне совершенного. По меньшей мере, пища необходима для обмена веществ, замены клеток, и т. п.

Новости науки. Исследования на кухонном столе

Подняться наверх