Читать книгу Economically and Environmentally Sustainable Enhanced Oil Recovery - M. R. Islam - Страница 35

2.5.1 Are Natural Resources Finite and Human Needs Infinite?

Оглавление

In economics, the notion of there being infinite need and finite resources is a fundamental premise that is asserted with dogmatic fervor in contemporary economics. In the context of petroleum resources, this notion has to help foment fear that is actually the driver of contemporary economics. This model starts off with the premise that needs must grow continually in order for the economy to thrive. Then, it implies, without looking at the validity of that premise, that there has to be an endless supply of energy to feed it. Because such endless supply contradicts the other premise that natural sources are finite, there arises an inherent contradiction. One such article is written by Mason (2017), who poses this wrong-headed question:

“But what happens to that equation when the net amount of energy we extract from the earth is shrinking? How, then, does an economy grow exponentially forever if the one element it needs more than anything to flourish is contracting with time?”

Then, he primes the audience with the need of a paradigm shift, that would involve challenging all orthodoxies involving the economy, as if to propose a revolution. Next, he creates a prophet out of a neuroscientist, Chris Martenson, who in recent years has turned his attention to the economy, particularly as it relates to dwindling energy resources and growing debt. Note how the premise of ‘dwindling energy resources’ is imbedded in this ‘revolutionary’ concept. How revolutionary is it? He writes:

“He also got rid of most any equity stocks and put his money in gold and silver. He has been labelled a prophet of doom and a survivalist, by some. But more recently, his views have been receiving wider and more serious attention. He has been to Canada to talk to oil and gas investors, of all people. That’s incongruous given his view that we’re pillaging the Earth of its energy resources in the most inefficient and wasteful ways possible.”

Intuitively, it sounds simple – if I use up a certain amount of a finite quantity each year, it will eventually run out. But that tells you that you cannot have constant or increasing resource extraction from a finite resource, it does not tell you anything about what you do with the resources you extract, how productive they are, or whether or not they enable continued economic growth. It is certainly possible to sustain exponential growth infinitely with finite resources, as long as the usage is confined to sustainable or zero-waste operations.

Similarly, all solutions end up proposing to minimize waste and maximize profit – an economic euphemism for Utilitarianism that has been preaching ‘maximizing pleasure and minimizing pain’ at a personal level. There has always been plenty of discussion in economics discourse about manipulating the interest rate, but never about eliminating it. There are plenty of suggestions regarding how to minimize waste, but one never proposes a solution to achieve zero-waste. There are even talks about continuously increasing productivity, but never talk about the fundamental assumption of infinite need and finite resource.

The notion of ‘The Infinite’ has intrigued humanity for a long time. In ancient civilizations, infinity was not a ‘large number’. It was something external to creation. In other words, only a Creator was considered to be infinite, along with many other traits that could not be part of Creation. However, this ‘infinity’ has nothing to do with the unbounded-ness of nature that has no boundary. Even though the ancient Greeks had a similar concept of infinitude, post-Aquinas Europe developed an entirely different take on infinitude, one highlighted recently by Khan and Islam (2016).

In a study published nearly 2 decades ago, Lawrence Lerner, Professor Emeritus in Physics and Astronomy at the University of Chicago, was asked to evaluate how Darwin’s theory of evolution was being taught in each state of the United States (Lerner 2000). In addition to his attempt to find a standard in K-12 teaching, Lerner made some startling revelations. His recommendations created controversy, with many suggesting he was promoting “bad science” in name of “good science.” However, no one singled out another aspect of his finding. He observed that “some Native American tribes consider that their ancestors have lived in the traditional tribal territories forever.” He then equated “forever” with “infinity” and continued his comment stating, “Just as the fundamentalist creationists underestimate the age of the earth by a factor of a million or so, the Black Muslims overestimate by a thousand-fold and the Indians are off by a factor of infinity” (Lerner 2005). This confusion between “forever” and “infinity” is not new in modern European culture. In the words of Albert Einstein, “There are two things that are infinite, human stupidity and the Universe, and I am not so sure about the Universe.” Even though the word “infinity” emerges from a Latin word, infinitas, meaning “unbounded-ness,” for centuries this word has been applied in situations in which it promotes absurd concepts. In Arabic, the equivalent word (la nihāyah) means “never-ending.” In Sanskrit, similar words exist (Aseem, meaning ‘no end’) and those words are never used in mathematical terms as a number. This use of infinity to enumerate something (e.g., infinite number of solutions) is considered to be absurd in other cultures.

Nature is infinite – in the sense of being all-encompassing – within a closed system that nevertheless lacks any boundaries. Somewhat paradoxically, nature as a system is closed in the sense of being self-closing. This self-closure property has two aspects. First, everything in a natural environment is used. Absent anthropogenic interventions, conditions of net waste or net surplus would not persist for any meaningful period of time. Secondly, nature’s closed system operates without benefit of, or dependence upon, any internal or external boundaries. Because of this infinite dimension, we may deem nature – considered in net terms as a system overall – to be perfectly balanced. Of course, within any arbitrarily selected finite time period, any part of a natural system may appear out of balance. However, to look at nature’s system without acknowledging all the subtle dependencies that operate at any given moment introduces a bias that distorts any conclusion that is asserted on the basis of such a narrow approach.

Figure 2.10 shows how the population in more developed countries reached a plateau while that of less-developed countries continued to grow, albeit with a slowed rate. In terms global energy need, this figure presents an interesting divide. In average, the energy consumption per capita of the ‘less-developed countries’ is an order of magnitude less than that of ‘more-developed countries’. In mathematical terms, it means the world has a capacity of sustaining energy needs of the majority of the population even if the population is increased 10-fold. In practical terms, it means that if we could contain the per capita energy consumption, we would have no worries about natural population growth. Indeed, the energy consumption of the ‘more developed countries’ has been contained. In last 20 years, the most populous ‘developed country’, the USA has shown practically constant per capita energy consumption. The USA is an important case as this country personifies global trend in terms of energy consumption. Historically, the USA has set standards for all aspects of technology development and other tangible aspects of civilization for a duration that has been synonymous with petroleum golden era – i.e., whatever it does today is emulated by the rest of the world in years to come. Table 2.5 shows per capita energy consumption (in tons of oil equivalent per year) of the USA in the last few decades, along with predictions for 2015. In this, Canada represents an interesting case. Canada follows the USA’s trend closely in matters of per capita energy consumption but falls far behind in matters of population growth, expenditure in research and development (particularly in energy and environment), expenditure in defense and pharmaceutical industries, and other long-term economic stimuli. Japan, on the other hand represents other extremity of the energy consciousness spectrum. As can be seen in Table 2.5, Japan maintains steady per capita energy consumption at almost half the value of that of Canada. At the same time, Japan has maintained very high relative investment in education and research and development. However, Japan’s population has been dropping, or keeping pace with Europe and unlike the USA. Canada’s population growth has been a mix of Europe/Japan (decline) and USA (mild growth). The difficulty involved in maintaining a balance between urbanization and per capita energy consumption is most sternly manifested in the case of Saudi Arabia. Both Germany and Russia show mild per capita energy consumption, signaling prudent usage of energy sources and high energy efficiency. Saudi Arabia is a ‘developing country’ in all measures except that it is projected to be the most energy-consuming country in the world by 2015. In as early as 1995, it exceeded the per capita energy consumption of Russia and Germany and is slated to exceed that of USA by 2015. Saudi Arabia represents the global trend by ‘developing countries’ to emulate the wasteful habits of the USA while shunning positive aspects of USA in the areas of economic growth, education or research and development. This trend of Saudi Arabia is alarming and is a trademark of global obsession with wasteful energy habits. Saudi Arabia is just an example of this obsession that is all pervasive in the developing countries as can be seen in Figure 2.11.


Figure 2.10 There are different trends in population growth depending on the state of the economy.

Table 2.5 Per capita energy consumption (in TOE) for certain countries (From Islam et al., 2018).

Countries 1990 1995 2000 2005 2010 2015
USA 7.7 7.8 8.2 7.9 7.3 7.3
Canada 7.5 7.9 8.1 8.4 7.6 7.6
Japan 3.6 4.0 4.1 4.1 3.7 3.9
Germany 4.4 4.1 4.1 4.1 4.0 3.8
Russia 5.9 4.3 4.2 4.5 4.8 5.5
Saudi Arabia 3.9 4.8 5.1 6.0 6.6 7.7
China 0.8 0.9 0.9 1.3 1.8 2.2
India 0.4 0.4 0.5 0.5 0.6 0.7
Indonesia 0.6 0.7 0.7 0.8 0.9 1.2
Sri Lanka 0.3 0.3 0.4 0.5 0.5 0.6

Figure 2.11 shows the growth in per capita energy consumption for some key countries that are not characterized as ‘more developed countries’. These countries all had very modest per capita energy needs in 1990. However, they all show exponential growth in energy needs in the last two decades. China leads the pack with the highest growth in energy needs. It nearly triples the energy need in 25 years. This trend shows that China could have dealt with its ‘population crisis’ by keeping the per capita energy consumption in check. This would have avoided many shortcomings of the one-child policy that China has imposed on its population for decades. Similar growth is shown by Indonesia – another country that attempted to decrease its population rather while increasing per capita energy needs. Over the two decades, Indonesia has doubled its per capita energy consumption. India has shown restraints in per capita energy consumption. While this is the case, its per capita energy consumption has doubled during the decades of concern. Sri Lanka has been the lowest energy consuming country (from the list of countries) but still maintains growth very similar to India and Indonesia.


Figure 2.11 Per capita energy consumption growth for certain countries.

It has been recognized for some time that there is a strong correlation between per capita energy need and GNP (as well as GDP). Over the last 30 years, the average consumption of the global ‘South’ has been nearly an order-of-magnitude less than that of the ‘West’ (Goldemberg et al., 1985; Khan and Islam, 2012). As the West has been trying to boost its population and contain its per capita energy consumption, while increasing its GNP, the ‘south’ has been trying to contain its population while increasing the per capita energy consumption as well as GNP.

These contradictory measures have created confusions in both the west and the ‘south’. This is most visible in the definition of GNP and GDP that reward an economy for increasing wasteful habits (e.g. per capita energy consumption). This contradiction has been discussed by Khan and Islam (2007), who introduced new techniques for measuring economic growth that could take account of true sustainability. They showed that true sustainability would increase GNP by increasing efficiency (rather than increasing per capita energy consumption).

Figure 2.12 shows how energy consumption has become synonymous with the concept of societal welfare, as expressed as tangible expression of the ‘quality of life.’ Goldenberg et al. (1985) correlated per capita energy consumption with a Physical Quality of Life Index (PQLI), which is an attempt to measure the quality of life or well-being of a country. The value is the average of three statistical data sets: basic literacy rate, infant mortality, and life expectancy at age one, all equally weighted on a 0 to 100 scale. It was developed for the Overseas Development Council in the mid-1970s by Morris David Morris, as one of a number of measures created due to dissatisfaction with the use of GNP as an indicator of development. PQLI is best described as the measure of tangible features of the society, not unlike GDP (Khan and Islam, 2007). Ever since, numerous other indices have been proposed, including more recently developed Happiness index, but they all suffer from similar short-comings, i.e., focus on tangibles, as outlined by Khan and Islam (2012 and Zatzman, 2012, 2013). The following steps are used to calculate Physical Quality of Life:


Figure 2.12 A strong correlation between a tangible index and per capita energy consumption has been at the core of economic development (from Goldenberg, 1985).

1 Find the percentage of the population that is literate (literacy rate).

2 Find the infant mortality rate (out of 1000 births). INDEXED Infant Mortality Rate = (166 - infant mortality) × 0.625

3 Find the Life Expectancy. INDEXED Life Expectancy = (Life expectancy - 42) × 2.7

4 Physical Quality of Life = (Literacy Rate + INDEXED Infant Mortality Rate + INDEXED Life Expectancy)/3.

This trend goes back to the earliest times of the Industrial Revolution more than two-and-a-half centuries ago. Khan and Islam (2012) discussed the mindset that promoted such wasteful habits in all disciplines. Figure 2.13 summarizes the dilemma. At the dawn of the industrial age, civilization began to be defined by consumption and wasteful habits. As the population grew, the energy consumption per capita should have been decreased in order compensate for the increasing energy demand. This would be in line with the claim that industrialization had increased human efficiency.


Figure 2.13 While population growth has been tagged as the source of economic crisis, wasteful habits have been promoted in name of emulating the west.

The opposite happened in the developed countries. For centuries, the per capita energy consumption increased, along with dependence on mechanization. It only stabilized in 1990s. By then, the population growth in the west has been arrested and have been declining in most part (the exception being USA). This population and energy paradox was further accentuated by encouraging the developing countries to emulate the west in wasteful habits. In every country, consumption per capita increased with time as a direct result of colonialism and imposed culture that is obsessed with externals and short-term gains. As a result, a very sharp increase in per capita energy consumption took place in the developing countries. As can be seen from Table 2.5, even with such increase, the “south” has not caught up with the “west”, with the exception of some petroleum-rich countries.

A major case in point here is China. For the last two decades, it attempted to curtail its population growth with a one-child per family law. The current Chinese government at the behest of the latest congress of the Communist Party of China has now repudiated this policy as practically unenforceable. Furthermore and even more interesting, however is that Figure 2.14 shows that the population growth has in fact been dwarfed by the increase in per capita energy consumption. A similar conclusion emerges from the comparable statistical profile for the Indian subcontinent, where infanticide and female-selective abortion is in order to boost male population in favor of female population that is considered to be a drain to the economy. This finding is meaningful considering India and China hold one third of the world population and can effectively change the global energy outlook either in favor or against sustainability.


Figure 2.14 Population and energy paradox for China (From Speight and Islam, 2016).

In order to change the above trend, and address the population and energy paradox, several indices have been introduced. These indices measure happiness in holistic terms. Comparing one person’s level of happiness to another’s is problematic, given how, by its very nature, reported happiness is subjective. Comparing happiness across cultures is even more complicated. Researchers in the field of “happiness economics” have been exploring possible methods of measuring happiness both individually and across cultures and have found that cross-sections of large data samples across nations and time demonstrate “patterns” in the determinants of happiness. The New Economics Foundation was the first one to introduce the term “Happiness index” in mid 2000’s (Khan and Islam, 2007; White, 2007). In first ever ranking, Bangladesh, one of the poorest nations of the time was found to be the happiest among some 150 countries surveyed. At that time, Bangladesh was among the lowest GDP countries along with very low per capita energy consumption. This study demonstrated that happiness is in fact inversely proportional to per capita energy consumption or GDP. Before, this study would set any trend globally in terms of energy policies, a number of similar happiness indices were introduced in succession, all showing a direct, albeit broad, correlation between GDP and happiness. One such index is the Happy Planet Index (HPI) that ranks 151 countries across the globe on the basis of how many long, happy and sustainable lives they provide for the people that live in them per unit of environmental output. It represents the efficiency with which countries convert the earth’s finite resources into well being experienced by their citizens. The Global HPI incorporates three separate indicators:

1 ecological footprint: the amount of land needed to provide for all their resource requirements plus the amount of vegetated land needed to absorb all their CO2 emissions and the CO2 emissions embodied in the products they consume;

2 life satisfaction: health as well as “subjective well-being” components, such as a sense of individual vitality, opportunities to undertake meaningful, engaging activities, inner resources that help one cope when things go wrong, close relationships with friends and family, and belonging to a wider community;

3 life expectancy: included is the child death, but not death at birth or abortions.

The first item couples CO2 emission levels with the carbon footprint measure. This emission relates only to fossil fuel usage, and does not take in account the fact that CO2 that is emitted from refined oil is inherently tainted with catalysts that are added during the refining process. This creates bias against fossil fuels and obscures the possibility of finding any remedy to the energy crisis.

The Organization for Economic Co-operation and Development (OECD) introduced the Better Life Index. It includes 11 topics that the OECD has identified as essential to wellbeing in terms of material living conditions (housing, income, jobs) and the quality of life (community, education, environment, governance, health, life satisfaction, safety and work-life balance). It then allows users to interact with the findings and rate the topics against each other to construct different rankings of wellbeing depending on which topic is weighted more heavily. For the purpose of this analysis, what matters is the Life Satisfaction survey. Life satisfaction is a measure of how people evaluate the entirety of their life and not simply their feelings at the time of the survey. The OECD study asks people to rate their own life satisfaction on a scale of 0 to 10. The ranking covers the organization’s 34 member countries plus Brazil and Russia.

The Happy Planet Index ranked Costa Rica as the happiest country in 2012. The particularly high score relates to high life expectancy and overall wellbeing. Vietnam and Colombia follow in second and third place. Of the top ten countries, nine are from Latin America and the Caribbean. Countries from Africa and the Middle East dominate the bottom of the ranking instead. Botswana is last after Bahrain, Mali, the Central African Republic, Qatar and Chad. Developed nations such as the United States and the European Union member countries tend to score high on life expectancy, medium-to-high in wellbeing, but rather low on their ecological footprint, which puts them in the ranking’s second-tier.

Economically and Environmentally Sustainable Enhanced Oil Recovery

Подняться наверх