Читать книгу Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк - Страница 33

Часть I. Все крупнее и крупнее
Глава 5. Наше космическое происхождение
Как действует инфляция

Оглавление

Сила удвоения

Алан догадался, что с помощью одной странно звучащей посылки можно разом решить и проблему горизонта, и проблему плоской геометрии, и объяснить многое другое. Посылка такова: в некоторый момент существовала однородная капля некоей плотной субстанции, которую было очень трудно рассеять. Это значит, что если бы 1 г такой субстанции вдвое увеличился в объеме, то его плотность (отношение массы к объему) осталась бы почти такой же, и получилось бы уже 2 г материи. Сравним это с обычным веществом, таким как воздух: если он расширяется, занимая больший объем (как при выпускании сжатого воздуха из шины), общее число молекул газа, а значит, и общая масса, остается неизменным, и плотность падает.

Согласно эйнштейновской теории гравитации, крошечная нерассеиваемая капля может испытать поразительное разрастание, которое Алан назвал инфляцией, и фактически вызвать Большой взрыв! Как показано на рис. 5.4, уравнения Эйнштейна имеют решение, в котором каждая часть капли удваивается в размерах за одинаковые отрезки времени (такой тип роста называют экспоненциальным). В этом сценарии наша едва зародившаяся Вселенная росла во многом так же, как вы сами сразу после зачатия (рис. 5.5): любая ваша клетка удваивалась примерно за сутки, за счет чего их общее число в каждый новый день составляло 1, 2, 4, 8, 16 и т. д. Повторяющееся удвоение – могучая сила, и ваша мама попала бы в трудное положение, если бы вы продолжали ежесуточно вдвое прибавлять в весе вплоть до своего рождения: через 9 месяцев (после 274 удвоений) вы весили бы больше, чем вся материя в наблюдаемой части Вселенной! Именно это происходит в описанном Аланом процессе инфляции: начавшись с капли размером много меньше и легче атома, он многократно удваивает ее размеры, пока она не становится массивнее, чем вся наблюдаемая Вселенная.


Рис. 5.4. Согласно эйнштейновской теории гравитации, нерассеиваемая субстанция (плотность которой не уменьшается при расширении) может “инфлировать”, удваиваясь в размерах через равные интервалы времени, и за доли секунды разрастается от субатомного масштаба до величины, сильно превосходящей наблюдаемую Вселенную. Так взрыв превращается в Большой взрыв. Это повторяющееся удвоение происходит во всех трех измерениях, так что удвоение в диаметре увеличивает объем в 8 раз. Здесь я изобразил только два измерения, так что удвоение диаметра учетверяет объем.


Рис. 5.5. Теория инфляции утверждает, что новорожденная Вселенная росла во многом так же, как ребенок: за фазой ускоренного роста, при которой размер удваивается через равные интервалы времени, следует более спокойная фаза замедляющегося роста. Поразительно, что вертикальная ось на обоих графиках одна и та же: в простейшей модели Вселенная прекращает инфлировать, когда примерно сравнивается в размерах с апельсином (но весит она при этом в 1081 раз больше). Наша новорожденная Вселенная удваивалась в размерах примерно в 1043 раз быстрее первых клеток зародыша.


Проблемы решены

Как видно на рис. 5.4, повторяющееся удвоение размеров автоматически приводит к повторяющемуся удвоению скорости расширения (я обозначил его стрелками). Иными словами, оно вызывает ускоряющееся расширение. Если бы вы прибавляли в весе ежедневно до своего рождения, то сначала вы расширялись бы довольно медленно (всего на несколько поперечников клетки в сутки). А ближе к концу периода созревания, превзойдя по массе наблюдаемую Вселенную и продолжая ежедневно удваиваться, вы расширялись бы с умопомрачительный скоростью – много миллиардов световых лет в день. Но если вы удваивали свою массу раз в сутки, то инфлирующая новорожденная Вселенная удваивала свою массу куда быстрее. В некоторых из самых популярных версий теории инфляции масса удваивается примерно каждую десятитриллионную от триллионной от квадриллионной (10–38) доли секунды, и требуется около 260 удвоений, чтобы породить массу наблюдаемой Вселенной. Это значит, что процесс инфляции от начала до конца по человеческим меркам был почти мгновенным и потребовал не более 10–35 секунды (это меньше, чем требуется свету, чтобы пройти миллионную часть поперечника протона). То есть экспоненциальное расширение начинается с чего-то крошечного, почти неподвижного, и превращает его в чудовищный взрыв. Благодаря этому инфляция решает «проблему взрыва», объясняя, чем вызван наш Большой взрыв – процессом повторяющегося удвоения. Она также объясняет, почему расширение однородно, как установил Эдвин Хаббл: области, которые отстоят вдвое дальше друг от друга, разлетаются вдвое быстрее (рис. 5.4).

На рис. 5.5 показано, что экспоненциальное расширение вашего тела в конце концов сменилось более медленным ростом. Новорожденная Вселенная также прекратила инфлировать. Инфлирующий материал распался на обычную материю, которая продолжила расширяться в более спокойном режиме, двигаясь по инерции со скоростью, которую она приобрела на взрывной инфляционный стадии, и постепенно замедляясь гравитацией.

Алан Гут понял, что инфляция также решает проблему горизонта. Удаленные области а и б на рис. 5.2 были чрезвычайно близки на ранних стадиях инфляции, у них было время для взаимодействия. Затем взрывное инфляционное расширение развело а и б, и только теперь они вновь начинают вступать в контакт. Клетки носа содержат те же ДНК, что и клетки пальцев ног, поскольку у них общий предок: и те, и другие возникли в результате последовательного удвоения первой вашей клетки. Аналогично далекие области космического пространства обладают сходными свойствами, поскольку имеют общее происхождение: они рождены последовательным удвоением одной и той же капли инфлирующей материи.

Но Алан Гут понял также, что инфляция решает также проблему плоской геометрии. Представьте, что вы муравей на сфере (рис. 2.7) и способны видеть лишь небольшую область искривленной поверхности, на которой живете. Если инфляция внезапно увеличит сферу в огромное число раз, эта небольшая доступная вашему наблюдению область станет выглядеть гораздо более плоской. Квадратный сантиметр поверхности шарика для пинг-понга заметно искривлен, тогда как квадратный сантиметр поверхности Земли почти идеально плоский. Аналогично, когда инфляция колоссально расширяет наше собственное трехмерное пространство, оно становится почти идеально плоским в пределах любого конкретного кубического сантиметра. Алан доказал, что если продолжительность инфляции достаточна для порождения наблюдаемой Вселенной, она сделает пространство настолько плоским, что оно продержится до наших дней без Большого хлопка и Большого замерзания.


Конец ознакомительного фрагмента. Купить книгу
Наша математическая вселенная. В поисках фундаментальной природы реальности

Подняться наверх